Переливание плазмы
Процедуру плазмафереза возможно выполнить двумя основными методами: дискретным и аппаратным. В результате медики могут заготавливать несколько видов плазмы для последующего переливания:
- Плазма нативная
, которая выделяется из донорской консервированной крови. Так, из 500 мл консервированной крови получают 250–300 мл нативной плазмы. - Плазма, получаемая методом автоматического плазмафереза
, с помощью специальной установки.
Для переливания используют свежезамороженную плазму той же группы крови. Изначально медики придерживаются дозировки 10–20 мл/кг. Решение о последующих трансфузиях принимается на основании клинического состояния пациента, результатов исследования свертывающей системы крови. При этом не стоит недооценивать значение плазмы крови.
Переливание плазмы – показания и противопоказания
Как и любая медицинская процедура, переливание плазмы имеет свои показания и противопоказания. Врачи всегда учитывают их перед назначением трансфузии кровоостанавливающих растворов. Среди ситуаций, когда может потребоваться переливание плазмы крови, показания выделяют следующие:
- Восполнение объема плазменных факторов гемостаза при ДВС, осложненном развитием шока.
- Восполнение объема плазменных факторов гемостаза при острой массивной кровопотере.
- Снижение синтеза плазменных факторов свертывания крови, вызванных болезнями печени.
- Передозировка антикоагулянтов прямого действия.
- Плазмаферез при тромбоцитопенической пурпуре, тяжелых отравлениях, сепсисе.
- Коагулопатия, обусловленная дефицитом плазменных физиологических антикоагулянтов.
Не рекомендуется проводить плазмаферез:
- в качестве восполнения объема крови;
- для парентерального питания;
- лицам с отягощенным трансфузиологическим анамнезом;
- при застойной сердечной недостаточности.
Переливание плазмы крови – побочные эффекты
Назначая подобную процедуру, врачи знают, чем опасно переливание плазмы, поэтому предпринимают соответствующие меры по предупреждению осложнений. Среди распространенных трансфузионных осложнений необходимо выделить:
- фебрильные негемолитические реакции;
- острую гемолитическую реакцию, обусловленную АВ0-несовместимостью;
- перегрузку системы кровообращения;
- аллергические реакции;
- посттрансфузионную пурпуру;
- инфекции.
Как получить плазму?
Получение плазмы из крови происходит с помощью центрифугирования. Метод позволяет отделить плазму от клеточных элементов с помощью специального аппарата, не повреждая их. Кровяные тельца возвращаются донору.
Процедура по сдаче плазмы имеет ряд преимуществ перед простой сдачей крови:
- Объем кровопотери меньше, а значит, вреда здоровью наносится тоже меньше.
- Кровь на плазму можно сдать вновь уже через 2 недели.
Существуют ограничения по сдаче плазмы. Так, донор может сдать плазму не более 12 раз за год.
Сдача плазмы занимает не больше 40 минут.
Плазма является источником такого важного материала, как сыворотка крови. Сыворотка – это та же плазма, но без фибриногена, однако с тем же набором антител. Именно они борются с возбудителями различных заболеваний. Иммуноглобулины способствуют скорейшему развитию пассивного иммунитета.
Чтобы получить сыворотку крови, стерильную кровь помещают в термостат на 1 час. Далее полученный сгусток крови отслаивают от стенок пробирки и определяют в холодильник на 24 часа. Полученную жидкость при помощи пастеровской пипетки добавляют в стерильный сосуд.
Плазма крови: состав и функции
Плазма крови – это вязкая однородная жидкость светло-желтого цвета. Она составляет около 55-60% от общего объема крови. В виде взвеси в ней находятся клетки крови. Обычно плазма прозрачна, но после приема жирной пищи может быть слегка мутной. Состоит из воды и растворенных в ней минеральных и органических элементов.
Состав плазмы и функции ее элементов
Большую часть плазмы составляет вода, ее количество – примерно 92 % от всего объема. Кроме воды, она включает следующие вещества:
- белки;
- глюкозу;
- аминокислоты;
- жир и жироподобные вещества;
- гормоны;
- ферменты;
- минералы (ионы хлора, натрия).
Около 8% от объема составляют белки, которые являются основной частью плазмы. В ней содержится несколько видов белков, основными из них являются:
- альбумины – 4-5%;
- глобулины – около 3%;
- фибриноген (относится к глобулинам) – около 0,4%.
Другие белки
Кроме вышеперечисленных, в плазме содержатся и другие белки:
- комплемент (иммунные белки);
- трансферрин;
- тироксинсвязывающий глобулин;
- протромбин;
- С-реактивный белок;
- гаптоглобин.
Также можете почитать:Общий белок в крови
Небелковые компоненты
Кроме этого плазма крови включает небелковые вещества:
- органические азотсодержащие: аминокислотный азот, азот мочевины, низкомолекулярные пептиды, креатин, креатинин, индикан. Билирубин;
- органические безазотистые: углеводы, липиды, глюкоза, лактат, холестерин, кетоны, пировиноградная кислота, минералы;
- неорганические: катионы натрия, кальция, магния, калия, анионы хлора, йода.
Ионы, находящиеся в плазме, регулируют баланс pH, поддерживают в норме состояние клеток.
Функции белков
У белков есть несколько предназначений:
- гомеостаз;
- обеспечение стабильности иммунной системы;
- поддержание агрегатного состояния крови;
- перенос питательных веществ;
- участие в процессе свертывания крови.
Функции плазмы
Плазма крови выполняет много функций, среди которых:
- транспортировка кровяных клеток, питательных веществ, продуктов обмена веществ;
- связывание жидких сред, находящихся вне кровеносной системы;
- осуществление контакта с тканями организма через внесосудистые жидкости, тем самым осуществляя гемостаз.
Донорская плазма спасает много человеческих жизней
Применение донорской плазмы
Для переливания в наше время чаще нужна не цельная кровь, а ее компоненты и плазма. Поэтому в пунктах переливания нередко сдают кровь на плазму.
Получают ее из цельной крови центрифугированием, то есть отделяют жидкую часть от форменных элементов с помощью аппарата, после чего клетки крови возвращают донору. Процедура продолжается около 40 минут.
Отличие от сдачи цельной крови заключается в том, что кровопотеря значительно меньше, и сдать плазму вновь можно уже через две недели, но не более 12 раз в течение года.
Для ее получения помещают на час в термостат стерильную кровь. Затем отслаивают образовавшийся сгусток от стенки пробирки и держат в холодильнике сутки.
После этого с помощью пастеровской пипетки отстоявшуюся сыворотку сливают в стерильную емкость.
Заключение
Плазма крови – это ее жидкая составляющая, имеющая очень сложный состав. Плазма выполняет в организме важные функции.
Кроме того, донорская плазма используется для переливания и приготовления лечебной сыворотки, которую используют для профилактики, лечения инфекций, а также в диагностических целях для идентификации полученных во время анализа микроорганизмов. Она считается более эффективной, чем вакцины.
Иммуноглобулины, содержащиеся в сыворотке, сразу же нейтрализуют вредные микроорганизмы и продукты их жизнедеятельности, быстрее формируется пассивный иммунитет.
Состав и задачи небелковых соединений в плазме
В плазме содержится:
- Органические соединения, основу которых составляет азот. Представители: мочевая кислота, билирубин, креатин. Повышение количества азота сигнализирует о развитии азотомии. Это состояние возникает из-за проблем с выведением мочой продуктов обмена либо из-за активного разрушения белка и поступления большого количества азотистых веществ в организм. Последний случай характерен для сахарного диабета, голодания, ожогов.
- Органические соединения, не содержащие азот. Сюда входит холестерин, глюкоза, молочная кислота. Компанию им составляют еще липиды. Все эти компоненты должны отслеживаться, так как они необходимы для поддержания полноценной жизнедеятельности.
- Неорганические вещества (Ca, Mg). Ионы Na и Cl отвечают за поддержания постоянного Ph крови. Они также следят за осмотическим давлением. Ионы Ca принимают участие в сокращении мышц и стимулируют чувствительность нервных клеток.
Состав плазмы крови
Альбумин
Альбумин в плазменной крови – основной компонент (более 50% ). Он отличается небольшой молекулярной массой. Местом образования данного белка является печень.
Предназначение альбумина:
- Переносит жирные кислоты, билирубин, лекарственные средства, гормоны.
- Берет участие в обмене веществ и образовании белка.
- Резервирует аминокислоты.
- Формирует онкотическое давление.
По количеству альбумина медики судят о состоянии печени. Если содержание альбумина в плазме снижено, то это указывает на развитие патологии. Низкое содержание этого белка плазмы у детей увеличивает риск заболеть желтухой.
Глобулины
Глобулины представлены крупными молекулярными соединениями. Они вырабатываются печенью, селезенкой, тимусом.
Выделяют несколько видов глобулинов:
- α – глобулины. Они взаимодействуют с тироксином и билирубином, связывая их. Катализируют образование белков. Отвечают за транспортировку гормонов, витаминов, липидов.
- β – глобулины. Эти белки связывают витамины, Fe, холестерол. Переносят катионы Fe, Zn, стероидные гормоны, стерины, фосфолипиды.
- γ – глобулины. Антитела или иммуноглобулины связывают гистамин и принимают участие в защитных иммунных реакциях. Они производятся печенью, лимфатической тканью, костным мозгом и селезенкой.
Насчитывают 5 классов γ – глобулинов:
- IgG (около 80% всех антител). Для него характерна высокая авидность (соотношение антитела к антигену). Может проникать через плацентарный барьер.
- IgM – первый иммуноглобулин, который образуется у будущего малыша. Белок отличается высокой авидностью. Он первый обнаруживается в крови после вакцинации.
- IgA.
- IgD.
- IgE.
Фибриноген – растворимый белок плазмы. Он синтезируется печенью. Под влиянием тромбина белок преобразуется в фибрин – нерастворимую форму фибриногена. Благодаря фибрину в местах, где целостность сосудов была нарушена, образуется сгусток крови.
Остальные белки и функции
Незначительные фракции белков плазмы после глобулинов и альбуминов:
- Протромбин,
- Трансферрин,
- Иммунные белки,
- С-реактивный белок,
- Тироксинсвязывающий глобулин,
- Гаптоглобин.
Задачи этих и других белков плазмы сводятся к:
- Поддержанию гомеостаза и агрегатного состояния крови,
- Контролю за иммунными реакциями,
- Транспортировке питательных веществ,
- Активации процесса свертывания крови.
Вредно или полезно
По поводу того, вредно ли сдавать плазму крови, бытуют разные, нередко прямо противоположные мнения. Одни убеждены, что такое занятие однозначно вредит нашему организму и настоятельно не советуют прибегать к нему. Другие же, наоборот, считают, что её сдача приносит донору пользу. Современные учёные-медики убедительно доказали, что такая процедура сдавшему плазму абсолютно ничем для его здоровья не угрожает, являясь совершенно безвредной. Более того, после сдачи плазмы активизируется работа защитных функций, иммунитета, поэтому опытные медики нередко назначают пациентам процедуру сдачи плазмы как лекарственную, оздоровительную.
Подготовка и процесс
Сдача плазмы предполагает обязательное выполнение ряда правил и требований. Желающий сдать её обязан знать, что в этом процессе существуют жесткие ограничения и даже запреты. Скажем, у человека нельзя брать плазму, если он болен:
- СПИДом;
- Сифилисом;
- Гепатитом;
- Страдает алкоголизмом или наркоманией, психическими или иными недугами.
Центр, где переливают кровь, не имеют также право делать это при проблемах с сахарным диабетом, ненормальном артериальном давлении, признаках сильной близорукости. Временные ограничения касаются тех, кто недавно перенес удаление зуба, операцию или вакцинацию, во время менструального процесса, является гомосексуалистом, нелегальным мигрантом и прочее. Эти и другие нормы определили на практике особенный алгоритм процедуры приёма. Сначала у потенциального донора должны взять кровь на анализ, чтоб определить, нет ли в ней вирусов, сколько в ней гемоглобина. Пациент обязан честно заполнить анкету, и лишь после этого его могут допустить к процедуре. До неё он должен избегать приёма:
- Соленой, острой и жирной пищи;
- Любых медикаментов;
- Алкоголя (минимум, за неделю, до дня сдачи).
После забора плазмы, который может иметь как автоматический, так и ручной формат, пациенту, как правило, ещё два часа предписано побыть в стационаре центра приема крови. Доброго вам здоровья!
Функции крови
То, сколько литров у человека крови определяется в соответствии с его индивидуальными особенностями и выполняемых жидкостью функциями. Кровь постоянно передвигается по системе, в состав которой входят крупные и мелкие сосуды. Они поставляют жидкость по всем органам и тканям в человеческом организме.
Красными клетками доставляется кислород к тканям, так как гемоглобин связывается с его молекулами. Тромбоциты являются участниками процесса свертывания в период кровотечений. С их помощью осуществляется образование тромба на месте повреждения. Благодаря лейкоцитам обеспечивается защита от воздействия негативных внешних и внутренних факторов.
Фибриноген
Выступает особым белком. Он вырабатывается в печени. Основная задача заключается в том, чтобы обеспечить нормальное свертывание крови. Процесс протекает в несколько этапов.
- Как только организму требуется закрыть рану, брешь в тканях, начинается синтез особых веществ-факторов. В том числе к ним относится и фибриноген.
- Как только количество вещества достигает определенного значения, оно подлежит расщеплению. Здесь участвует особое соединение под названием тромбин.
- Фибриноген разрушается и распадается на клейкие составляющие. Так называемые нити.
- После того как фактор выпал в осадок, он приклеивается к месту поражения, тромбоцитам, обеспечивая нормальную свертываемость. Образуется тромб, который прикрывает раневую поверхность. Затем из него формируется жесткий струп.
Процесс протекает всякий раз, когда образуется область поражения. Если фибриногена недостаточно, начинаются коагулопатии. Нарушается нормальная свертываемость. Кровь становится слишком жидкой.
Аминокислоты
Выступают своего рода строительным материалом для клеток организма. Также входят в состав их стенок, обеспечивая нормальную проводимость цитоплазматической мембраны. И в то же время ее прочность и эластичность.
- Жиры. Липиды, как и аминокислоты — это основной строительный материал. Ключевой из них — хорошо известный всем холестерин.
- Глюкоза. Выступает питательным веществом. Работает как специальный запас. Поскольку при расщеплении выделяется большое количество энергии. Как правило, при производстве донорского материала глюкозу не удаляют, она остается на месте.
- Гормоны. Те, что выработались в организме пациента. Выполняют роль своего рода медиаторов, веществ, передающих сигналы тканям и целым системам. Это их основная задача.
- Минералы. Йод, железо, хлор, десятки других веществ. Как в виде законченного соединения, которое не вступает в простые реакции, так и в форме заряженных ионов. Именно последние поддерживают нормальную кислотность крови, участвуют в работе клеток, цитоплазматических мембран.
Все вещества выполняют две основных функции. Если говорить о вопросе обобщенно.
Какие именно:
- Обеспечение правильного обмена веществ.
- Поддержание состояние гомеостаза. Когда организм находится в равновесии, правильно работает и стабилен по отношению к самому себе.
Недостаток или избыток любого соединения сразу заканчивается нарушениями. В этом случае требуется лечение.
Альбумин
Соединение синтезируется в печени. Если говорить о концентрации, то на долю белка приходится до 50% от общего количества веществ в плазме.
Выполняет альбумин несколько важных функций:
- Транспортировка. Перенос соединений с места на место. Если сравнивать с самой жидкой фракцией, здесь механизм будет несколько другим. Альбумин связывает вещества, лично участвуя в переносе. Это не чисто механическое действие.
Благодаря такой способности, он может транспортировать лекарства, гормоны и все важные соединения, химически активные структуры.
- Обмен веществ. Без альбумина не может быть нормального метаболизма. В том числе энергетического.
- Регулирование местного давления. Речь идет о показателе, при котором инородные вещества беспрепятственно проходят внутрь клеток. Если белка недостаточно, начинаются нарушения в работе всего организма. Поскольку альбумин регулирует и обмен веществ, и местное давление на молекулярном уровне. Все отклонения становятся заметны сразу.
- Синтез белков. Альбумин в некоторых случаях выполняет функцию строительного материала. При его переработке формируются другие вещества. Процесс постоянный, протекает практически без перерыва.
- Сохранение аминокислот. Резервирование. В этой ситуации альбумин выступает своего рода банком. До поры-до времени, пока аминокислоты не понадобятся.
Альбумин – один из важнейших белков жидкой соединительной ткани. Он работает и как транспорт, и как хранитель важных веществ. А в некоторых случаях исполняет задачи, связанные с синтезом прочих химических молекулярных структур.
Клетки крови – строение и функции
Каждый из вариантов составляющих биологической жидкости предназначен для специфических задач. Все типы клеток крови взаимодействуют и происходят от идентичных «прародителей», но функции у них разные, как и строение. Эти характеристики важны и при выполнении тестирования биологической жидкости, потому что любые нарушения параметров свидетельствуют о патологических состояниях в организме.
Эритроциты – строение и функции
Красные клетки крови представляют собой «контейнеры» с гемоглобином. Это особый пигментированный белок, придающий биологической жидкости насыщенный цвет
Важно изучить, как выглядят, из чего состоят эритроциты, их строение и функции тесно связаны. Гемоглобин, наполнитель красных телец, упрощенно включает 2 части: гем – ядро с атомами железа, и глобин – белковую спираль
Внешне эритроциты напоминают плоскую двояковогнутую лепешку. Такая форма обеспечивает возможность эффективного захвата кислорода в альвеолах легких, и его транспортировки. Клетки очень маленькие (до 10 мкм) и эластичные, благодаря чему они легко движутся даже в тончайших сосудах и капиллярах. Эритроциты высокоспециализированы, выполняют следующие функции:
- дыхательная;
- перенос питательных веществ;
- адсорбция токсинов;
- свертывание крови (косвенно);
- хранение антигенов.
Лейкоциты – строение и функции
Белые кровяные клетки классифицируют на две большие группы – агранулоциты (незернистые) и гранулоциты (зернистые). Они отличаются по строению ядер, выполняемым задачам, способностям взаимодействовать с чужеродными микроорганизмами и органеллами. Первый тип делится на моноциты и лимфоциты. Вторая группа включает следующие виды лейкоцитов:
- нейтрофильные;
- базофильные;
- эозинофильные.
Упрощенное строение лейкоцитов – ядро, тело и ложноножки. Клетка визуально напоминает шарик с ворсинками. Ложноножки обеспечивают лейкоциту максимальную подвижность, способность проникать сквозь любые мембраны и преодолевать сосудистые стенки. Это необходимо для выполнения лейкоцитарных функций:
- защита от инфекций, инородных тел, чужеродных белковых структур;
- провокация воспаления;
- обеспечение работы иммунной системы;
- регуляция протекания аллергических реакций;
- ответ на паразитарные инвазии;
- уничтожение раковых клеток.
Тромбоциты – строение и функции
Эти клетки крови уникальны по свойствам
Как и в случае с эритроцитами, важно рассмотреть, что содержат тромбоциты, их строение и функции тоже зависят друг от друга. У клеток нет ядра, но присутствует большое количество гранул
Когда тромбоцит активируется на фоне повреждения, он меняет свою шаровидную форму и уплощается, превращаясь в пластинку с отростками. Количество таких «веточек» достигает 10 штук, их длина может превышать диаметр клетки в 5-10 раз. Благодаря отросткам тромбоциты прикрепляются к месту «пробоины» и друг другу, формируя пробку, необходимую для заживления.
Строение описываемых элементов схематически:
- Гликокаликс.
Слой над мембраной с открытой системой канальцев. Гликокаликс запускает механизм сплющивания тромбоцита и его активацию. - Мембрана.
Содержит лизосомы, которые взаимодействуют с факторами свертывания крови. - Матрикс или гель-зона.
В ней располагаются митохондрии, выделяющие специфические гранулы. - Органеллы.
Данная область представляет собой скопление разных гранул, отвечающих за процесс свертывания крови.
https://youtube.com/watch?v=iDc5eRa1ias%250D
Функции и задачи плазмы
Для чего нужна плазма человеческому организму?
Ее функции разнообразны, но в основном они сводятся к 3 главным:
- Транспортирование кровяных телец, питательных веществ.
- Осуществление связи между всеми жидкими средами организма, которые располагаются вне кровеносной системы. Эта функция возможна, за счет способности плазмы проникать сквозь сосудистые стенки.
- Обеспечение гемостаза. Подразумевается контроль над жидкостью, которая останавливается во время кровотечений и удалять образовавшийся тромб.
Заболевания, влияющие на свойства плазмы
В медицине выделяют несколько заболеваний, которые способны влиять на состав плазмы. Все они представляют угрозу для здоровья и жизни человека.
Основными из них являются:
- Гемофилия. Это наследственная патология, когда наблюдается недостаток белка, который отвечает за свертываемость.
- Заражение крови или сепсис. Явление, возникающее из-за попадания инфекции непосредственно в кровеносное русло.
- ДВС-синдром. Патологическое состояние, причиной которого является шок, сепсис, тяжелые повреждения. Характеризуется нарушениями свертывания крови, которые приводят одновременно к кровотечению и образованию тромбов в мелких сосудах.
- Глубокий венозный тромбоз. При заболевании наблюдается формирование тромбов в глубоких венах (преимущественно на нижних конечностях).
- Гиперкоагуляция. У пациентов диагностируется чрезмерно высокая свертываемость крови. Вязкость последней увеличивается.
Плазмотест или реакция Вассермана – это исследование, выявляющее наличие антител в плазме к бледной трепонеме. По этой реакции вычисляется сифилис, а также эффективность его лечения.
Заболевания человека, которые влияют на состав и характеристику плазмы в крови являются крайне опасными.
Выделяют перечень болезней:
- Сепсис крови — возникает, когда инфекция попадает непосредственно в кровеносную систему.
- Гемофилия у детей и взрослых — генетический дефицит белка, отвечающий за свертываемость.
- Гиперкоагулянтное состояние — слишком быстрая свертываемость. В таком случае вязкость крови увеличивается и пациентам назначают препараты для ее разжижения.
- Глубокий тромбоз вен — формирование тромбов в глубоких венах.
- ДВС-синдром — одновременное возникновение тромбов и кровотечений.
Плазма — есть жидкая составляющая крови со сложным составом. Она сама выполняет ряд функций, без которых жизнедеятельность организма человека была бы невозможной.
В медицинских целях, плазма в составе крови чаще эффективнее, чем вакцина, поскольку составляющие её иммуноглобулины реактивно уничтожают микроорганизмы.
Сколько литров крови в человеке.
5,5 литров – именно столько крови в организме у взрослого человека. 50 миллиардов – такое количество кровяных клеток содержится в 1 литре крови – физически это даже невозможно представить! Одна капля заключает в себя 300 тысяч красных клеток. Если мысленно эти клетки объединить в цепочку, не изменяя их реальный размер, то эта цепь способна обернуться четырежды вокруг земного шара.
Несмотря на свой микроскопический размер клетки способны занимать поистине громадную площадь. К примеру, если выложить эти клетки ковром, то общая площадь его составит 4090 метров2. Поскольку все время почти четверть крови питает легкие, то это значит, что порядка 1000 метров2 поверхности кровяных телец соприкасаются с воздухом. Каждую секунду воздушные мешки наших легких пропускают сквозь себя около 2 миллиардов клеток этой красной жидкости.
Так как на равнине воздух находится под большим давлением, то содержание кислорода в нем меньше, чем на высокогорье. Поэтому место проживания человека напрямую влияет на то, сколько клеток крови – чем выше человек живет, тем их у него больше. У людей, живущих в горных районах Швейцарии кровяных клеток больше на 50 процентов по сравнению с жителями Лондона.
Процедура сдачи плазмы крови
Те, кто планирует становиться донорами, очень часто испытывают психологический стресс перед первой сдачей, потому что не представляют, как доноры сдают плазму и что происходит в процессе. Подробно расскажем о том, что происходит перед процедурой, во время сдачи плазмы и после дотации.
Приехав в клинику или пункт переливания крови, донор попадает в регистратуру. При первичном приеме ему заводят карту, где указывают основную информацию.
Затем производится предварительный медицинский осмотр. Он включает в себя общий анализ крови, проверку на антитела к ВИЧ, гепатиту, сифилису, выявляют группу крови, резусную принадлежность и келл-антиген.
После того, как анализы сданы, донор отправляется к терапевту, который просмотрит результаты анализов, измерит кровяное давление и температуру и примет решение о том, допускается ли донор к сдаче плазмы. После этого врач коротко расскажет, как происходит сдача плазмы крови и ответит на все возникающие вопросы.
После этого донор приступает непосредственно к сдаче плазмы. Процедуру проводят в положении лежа, из одной руки производится забор крови, она поступает в специальную центрифугу, где разделяется на отдельные компоненты: тромбоциты и эритроциты отделяются от клеток собственно плазмы. Клетки крови, отделенные от плазмы, поступают во вторую руку.
Донация длится от 40 минут до часа, после окончания рекомендуется некоторое время полежать, не делать резких движений, выпить стакан крепкого сладкого чая для восстановления сил. В течение получаса не стоит уходить из клиники на случай, если возникнут такие проблемы, как головокружение или потеря сознания.
После сдачи плазмы накладывается повязка, которую нельзя снимать около двух или трех часов, чтобы не возникло кровотечение.
В течение двух суток после донации лучше исключить физические нагрузки, тяжелую работу, не заниматься в спортзале.
Белки плазмы в качестве лабораторных показателей
В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.
Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.
Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).
Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном материале по глобулинам.
Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).
Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию трансферрина (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe3+, как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.
Исследование сыворотки с целью определения содержания церулоплазмина (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).
Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, С-реактивный белок).
Суть метода
В основе способа лежит возможность искусственно разделять кровь на элементы и возвращать необходимые компоненты обратно в организм пациента. Используется группа методик.
Центифугирование. Классический, распространенный вариант. Применяется в том случае, если вернуть плазму невозможно. Соответственно, в основном речь идет о тяжелых заболеваниях, интоксикациях. В том числе алкоголем.
Прямо из центрифуги в обратном направлении движутся физиологический раствор, глюкоза, чтобы восстановить нормальную концентрацию крови. Ее объем. В противном случае произошла бы гиповолемия.
Фильтрация. Поскольку плазма содержит больше всего токсинов, веществ опасных для жизни, кровь автоматически пропускают через специальную мембрану, отсюда и название — мембранный плазмаферез. Форменные клетки слишком крупные, чтобы транспортироваться сквозь нее, проходит только плазма.
Далее все зависит от концентрации токсинов, ядовитых веществ. Если их не удается удалить, в таком случае жидкая фракция замещается искусственными растворами. Это позволяет избежать гиповолемии.
- Третий способ основан не более тщательной очистке жидкой соединительной ткани. Используется система (каскад) фильтров для плазмофильтрации. Речь идет о так называемом двойном плазмаферезе. После полной обработки кровь возвращается в организм пациента. Этот метод годится только в том случае, если возможна ее очистка и фильтрация.
- Крио-плазмаферез. Способ предполагает 2 ключевые стадии. Первая — это обработка крови. Разделение ее на два основных компонента. Плазму замораживают при низкой температуре. Не более -30. Затем во время второй «итерации» жидкую фракцию нагревают до плюсовых значений и вводят обратно в организм.
Внимание:
Крио-методика рискованная, потому и применяют ее относительно редко. Хотя по эффективности она превосходит все предыдущие, особенно при тяжелых отравлениях.
Плазма крови: состав и функции
Плазма крови – это вязкая однородная жидкость светло-желтого цвета. Она составляет около 55-60% от общего объема крови. В виде взвеси в ней находятся клетки крови. Обычно плазма прозрачна, но после приема жирной пищи может быть слегка мутной. Состоит из воды и растворенных в ней минеральных и органических элементов.
Состав плазмы и функции ее элементов
Большую часть плазмы составляет вода, ее количество – примерно 92 % от всего объема. Кроме воды, она включает следующие вещества:
- белки;
- глюкозу;
- аминокислоты;
- жир и жироподобные вещества;
- гормоны;
- ферменты;
- минералы (ионы хлора, натрия).
Около 8% от объема составляют белки, которые являются основной частью плазмы. В ней содержится несколько видов белков, основными из них являются:
- альбумины – 4-5%;
- глобулины – около 3%;
- фибриноген (относится к глобулинам) – около 0,4%.
Другие белки
Кроме вышеперечисленных, в плазме содержатся и другие белки:
- комплемент (иммунные белки);
- трансферрин;
- тироксинсвязывающий глобулин;
- протромбин;
- С-реактивный белок;
- гаптоглобин.
Также можете почитать:Общий белок в крови
Небелковые компоненты
Кроме этого плазма крови включает небелковые вещества:
- органические азотсодержащие: аминокислотный азот, азот мочевины, низкомолекулярные пептиды, креатин, креатинин, индикан. Билирубин;
- органические безазотистые: углеводы, липиды, глюкоза, лактат, холестерин, кетоны, пировиноградная кислота, минералы;
- неорганические: катионы натрия, кальция, магния, калия, анионы хлора, йода.
Ионы, находящиеся в плазме, регулируют баланс pH, поддерживают в норме состояние клеток.
Функции белков
У белков есть несколько предназначений:
- гомеостаз;
- обеспечение стабильности иммунной системы;
- поддержание агрегатного состояния крови;
- перенос питательных веществ;
- участие в процессе свертывания крови.
Применение донорской плазмы
Для переливания в наше время чаще нужна не цельная кровь, а ее компоненты и плазма. Поэтому в пунктах переливания нередко сдают кровь на плазму.
Получают ее из цельной крови центрифугированием, то есть отделяют жидкую часть от форменных элементов с помощью аппарата, после чего клетки крови возвращают донору. Процедура продолжается около 40 минут.
Отличие от сдачи цельной крови заключается в том, что кровопотеря значительно меньше, и сдать плазму вновь можно уже через две недели, но не более 12 раз в течение года.
Из плазмы получают сыворотку крови, которую используют в лечебных целях. Она отличается от плазмы тем, что в ней нет фибриногена, при этом содержатся все антитела, которые могут противостоять возбудителям болезней.
Для ее получения помещают на час в термостат стерильную кровь. Затем отслаивают образовавшийся сгусток от стенки пробирки и держат в холодильнике сутки.
После этого с помощью пастеровской пипетки отстоявшуюся сыворотку сливают в стерильную емкость.
Заключение
Плазма крови – это ее жидкая составляющая, имеющая очень сложный состав. Плазма выполняет в организме важные функции.
Кроме того, донорская плазма используется для переливания и приготовления лечебной сыворотки, которую используют для профилактики, лечения инфекций, а также в диагностических целях для идентификации полученных во время анализа микроорганизмов. Она считается более эффективной, чем вакцины.
Иммуноглобулины, содержащиеся в сыворотке, сразу же нейтрализуют вредные микроорганизмы и продукты их жизнедеятельности, быстрее формируется пассивный иммунитет.
Все о плазме
Плазма – это жидкость, образованная водой и сухими веществами. Она составляет основную часть крови – около 60 %. Благодаря плазме кровь имеет состояние жидкости. Хотя по физическим показателям (по плотности) плазма тяжелее воды.
Макроскопически плазма представляет собой прозрачную (иногда мутную) однородную жидкость светло-желтого цвета. Она собирается в верхнем участке сосудов, когда форменные элементы оседают. Гистологический анализ показывает, что плазма – межклеточное вещество жидкой части крови.
Мутной плазма становится после употребления человеком жирных продуктов.
Что такое сухая плазма?
Возникновение в нашем организме какого-либо сбоя или же нарушения приводит к тому, что при наличии данных факторов ему требуется специальное лечение и переливание крови. Потребоваться может как плазма после фракции, так и определенная часть крови, с помощью которой и происходит полное восстановление потерянной жидкости.
Чаще всего, возникновение таких ситуаций связывают с сосудистой недостаточностью, которая наступает в следующих случаях:
- Сильная потеря крови.
- Состояние шока, возникающее после получения сильного ожога.
- Шок, который возникает впоследствии полученных травм с разрывами тканей.
В качестве заменителя в данном случае выступает сухая плазма. Прежде чем ввести ее в организм человека, сухая плазма предварительно растворяется в воде. Точную концентрацию знают только врачи, которые тщательно за этим следят, прежде чем ввести ее человеку внутривенно. Несмотря на то, что сухая плазма, попадая в организм, способна восстановить потерянные объемы крови, есть риск того, что после ее введения человек заболеет гепатитом.
Чтобы после процедуры пациент не заразился вирусом гепатита, специалисты разрабатывают и составляют различные методики, применение которых существенно увеличивает шансы на успешное лечение. Например, если хранить ее при комнатной температуре или же если она прошла тепловую стерилизацию с сохранением, например, таких веществ, как литий или инсулин, то шансы заразиться гепатитом значительно снижаются. Надо отметить, что сегодня, дабы сократить число зараженных пациентов, в медицинской практике используется только та плазма крови, которая прошла стерилизацию, к тому же она должна иметь определенную концентрацию.
Как определить объем крови у человека?
Для этой цели в кровь вводят определенное количество контрастного вещества, как правило, безвредного красителя. После того как он распределится по всему руслу, делают забор для определения его концентрации.
Другой способ – введение радиоактивных изотопов и подсчет числа эритроцитов, в которых они содержатся. Количество крови определяется по уровню ее радиоактивности.
Для нормализации объема крови в организме применяют гемотрансфузию
Глобулины
Остальные белки плазмы относятся к глобулинам, которые являются крупномолекулярными. Вырабатываются они в печени и в органах иммунной системы. Основные виды:
- альфа-глобулины,
- бета-глобулины,
- гамма-глобулины.
Альфа-глобулины связывают билирубин и тироксин, активизируют производство белков, транспортируют гормоны, липиды, витамины, микроэлементы.
Бета-глобулины связывают холестерол, железо, витамины, транспортируют стероидные гормоны, фосфолипиды, стерины, катионы цинка, железа.
Гамма-глобулины связывают гистамин и участвуют в иммунологических реакциях, поэтому их называют антителами, или иммуноглобулинами. Существует пять классов иммуноглобулинов: IgG, IgM, IgA, IgD, IgE. Вырабатываются в селезенке, печени, лимфоузлах, костном мозге. Они отличаются друг от друга биологическими свойствами, структурой. Имеют разные способности по связыванию антигенов, активированию иммунных белков, имеют разную авидность (скорость связывания с антигеном и прочность) и способность проходить через плаценту. Примерно 80% всех иммуноглобулинов оставляют IgG, которые обладают высокой авидностью и являются единственными из всех, способными проникать через плаценту. Первыми у плода синтезируются IgM. Они же появляются первыми в сыворотке крови после большинства прививок. Обладают высокой авидностью.
Состав крови
Фибриноген является растворимым белком, который образуется в печени. Под воздействием тромбина он превращается в нерастворимый фибрин, благодаря которому формируется сгусток крови в месте повреждения сосуда.
Глава 14. БИОХИМИЯ КРОВИ
В спортивной практике анализ крови используется для оценки влияния на организм спортсмена тренировочных и соревновательных нагрузок, оценки функционального состояния спортсмена и его здоровья. Информация, полученная при исследовании крови, помогает тренеру управлять тренировочным процессом. Поэтому специалист в области физической культуры должен иметь необходимые представления о химическом составе крови и об его изменениях под воздействием физических нагрузок различного характера.
Общая характеристика крови
Объем крови у человека около 5 л, что составляет примерно 1/13 часть от объема или массы тела.
По своему строению кровь является жидкой тканью и подобно любой ткани состоит из клеток и межклеточной жидкости.
Клетки крови носят название форменные элементы
. К ним относятся красные клетки
(эритроциты),
белые клетки
(лейкоциты)
и кровяные пластинки
(тромбоциты).
На долю клеток приходится около 45 % от объема крови.
Жидкая часть крови называется плазмой
. Объем плазмы составляет соответственно примерно 55 % от объема крови. Плазма крови, из которой удален белок фибриноген, называется
сывороткой
.
Биологические функции крови
Основными функциями крови являются следующие:
1. Транспортная функция
. Эта функция обусловлена тем, что кровь постоянно перемещается по кровеносным сосудам и переносит растворенные в ней вещества. Можно выделить три разновидности этой функции.
Трофическая функция
. С кровью ко всем органам доставляются вещества, необходимые для обеспечения в них метаболизма
(источники энергии, строительный материал для синтезов, витамины, соли и др.).
Дыхательная функция
. Кровь участвует в переносе кислорода от легких к тканям и переносе углекислого газа от тканей к легким.
Выделительная функция (экскреторная).
С помощью крови конечные продукты метаболизма транспортируются из клеток тканей к выделительным органам с последующим их удалением из организма.
2. Защитная функция
. Эта функция, прежде всего, заключается в обеспечении иммунитета – защиты организма от чужеродных молекул и клеток. К защитной функции также можно отнести способность крови к свертыванию. В этом случае осуществляется защита организма от кровопотери.
3. Регуляторная функция
. Кровь участвует в обеспечении постоянства температуры тела, в поддержании постоянства рН и осмотического давления. С помощью крови происходит перенос гормонов – регуляторов метаболизма.
Все перечисленные функции направлены на поддержание постоянства условий внутренней среды организма — гомеостаза
(постоянства химического состава, кислотности, осмотического давления, температуры и т.п. в клетках организма).
Химический состав плазмы крови.
Химический состав плазмы крови в покое относительно постоянен. Основные составные компоненты плазмы следующие:
Вода — 90 %
Белки — 6-8 %
Прочие органические
вещества — около 2 %
Минеральные вещества — около 1 %
Белки плазмы крови
делятся на две фракции:
альбумины
и
глобулины
. Соотношение между альбуминами и глобулинами носит название «альбумино-глобулиновый коэффициент» и равно 1,5 – 2. Выполнение физических нагрузок сопровождается вначале увеличением этого коэффициента, а при очень продолжительной работе он снижается.
Альбумины
– низкомолекулярные белки с молекулярной массой около 70 тыс. Да. Они выполняют две основные функции.
Во-первых, благодаря хорошей растворимости в воде эти белки выполняют транспортную функцию, перенося с током крови различные нерастворимые в воде вещества (например, жиры, жирные кислоты, некоторые гормоны и др.).
Во-вторых, вследствие высокой гидрофильности альбумины имеют значительную гидратную (водную)
оболочку и поэтому задерживают воду в кровяном русле. Задержка воды в кровяном русле необходима в связи с тем, что содержание воды в плазме крови выше, чем в окружающих тканях, и вода в силу диффузии стремится выйти из кровеносных сосудов в ткани. Поэтому при значительном снижении альбуминов в крови
(при голодании, при потере белков с мочой при заболеваниях почек)
возникают отёки.
Глобулины
– это высокомолекулярные белки с молекулярной массой около 300 тыс. Да. Подобно альбуминам глобулины также выполняют транспортную функцию и способствуют задержке воды в кровяном русле, но в этом они существенно уступают альбуминам. Однако у глобулинов
имеются и очень важные функции. Так, некоторые глобулины являются ферментами и ускоряют химические реакции, протекающие непосредственно в кровяном русле. Еще одна функция глобулинов заключается в их участии в свертывании крови и в обеспечении иммунитета (защитная функция).
Бóльшая часть белков плазмы синтезируется в печени.
Прочие органические вещества (кроме белков)
обычно делятся на две группы:
азотистые
и
безазотистые
.
Азотистые соединения
— это промежуточные и конечные продукты обмена белков и нуклеиновых кислот. Из промежуточных продуктов белкового обмена в плазме крови имеются
низкомолекулярные пептиды
,
аминокислоты
,
креатин
. Конечные продукты метаболизма белков это, прежде всего,
мочевина(её концентрация в плазме крови довольно высокая – 3,3-6,6 ммоль/л), билирубин
(
конечный продукт распада гема
) и
креатинин(конечный продукт распада креатинфосфата).
Из промежуточных продуктов обмена нуклеиновых кислот в плазме крови можно обнаружить нуклеотиды
,
нуклеозиды
,
азотистые основания
. Конечным продуктом распада нуклеиновых кислот является
мочевая кислота
, которая в небольшой концентрация всегда содержится в крови.
Для оценки содержания в крови небелковых азотистых соединений часто используется показатель «небелковый
азот»
. Небелковый азот включает азот низкомолекулярных
(небелковых)
соединений, главным образом перечисленных выше, которые остаются в плазме или сыворотке крови после удаления белков. Поэтому этот показатель также называют «остаточным азотом». Повышение в крови остаточного азота наблюдается при заболеваниях почек, а также при длительной мышечной работе.
К безазотистым веществам
плазмы крови относятся
углеводы
и
липиды
, а также промежуточные продукты их метаболизма.
Главным углеводом плазмы является глюкоза
. Её концентрация у здорового человека в покое и состоянии «натощак» колеблется в узком диапазоне от 3,9 до 6,1 ммоль/л
(или 70-110 мг%).
Поступает глюкоза в кровь в результате всасывания из кишечника при переваривании пищевых углеводов, а также при мобилизации гликогена печени. Кроме глюкозы в плазме также содержатся в небольших количествах другие моносахариды –
фруктоза
,
галактоза, рибоза
,
дезоксирибоза
и др. Промежуточные продукты углеводного обмена в плазме представлены
пировиноградной
и
молочной
кислотами. В покое содержание молочной кислоты
(лактата)
низкое – 1-2 ммоль/л. Под влиянием физических нагрузок и особенно интенсивных концентрация лактата в крови резко возрастает
(даже в десятки раз !).
Липиды представлены в плазме крови жиром
,
жирными кислотами
,
фосфолипидами
и
холестерином
. Вследствие нерастворимости в воде все
липиды связаны с белками плазмы: жирные кислоты с альбуминами, жир, фосфолипиды и холестерин с глобулинами. Из промежуточных продуктов жирового обмена в плазме всегда имеются кетоновые тела
.
Минеральные вещества
находятся в плазме крови в виде катионов
(Na+, K+, Ca2+, Mg2+ и др.)
и анионов
(Сl-, HCO3-, H2PO4-, HPO42-, SO42_, J- и др.).
Больше всего в плазме содержится натрия, калия, хлоридов, бикарбонатов. Отклонения в минеральном составе плазмы крови могут наблюдаться при различных заболеваниях и при значительных потерях воды за счет потоотделения при выполнении физической работы.
Содержание основных компонентов крови представлено в табл. 6.
Таблица 6. Основные компоненты крови
Компонент | Концентрация в тра- диционных единицах | Концентрация в единицах СИ |
Б е л к и | ||
Общий белок | 6-8 % | 60-80 г/л |
Альбумины | 3,5- 4,5 % | 35-45 г/л |
Глобулины | 2,5 — 3,5 % | 25-35 г/л |
Гемоглобин у мужчин у женщин | 13,5-18 % 12-16 % | 2,1-2,8 ммол/л 1,9-2,5 ммоль/л |
Фибриноген | 200-450 мг% | 2-4,5 г/л |
Небелковые азотистые вещества | ||
Остаточный азот | 20-35 мг% | 14-25 ммоль/л |
Мочевина | 20-40 мг% | 3,3-6,6 ммоль/л |
Креатин | 0,2-1 мг% | 15-75 мкмоль/л |
Креатинин | 0,5-1,2 мг% | 44-106 мкмоль/л |
Мочевая кислота | 2-7 мг% | 0,12-0,42 ммоль/л |
Билирубин | 0,5-1 мг% | 8,5-17 мкмоль/л |
Безазотистые вещества | ||
Глюкоза(натощак) | 70-110 мг% | 3,9-6,1 ммоль/л |
Фруктоза | 0,1-0,5 мг% | 5,5-28 мкмоль/л |
Лактатартериальная кровьвенозная кровь | 3-7 мг% 5-20 мг% | 0,33-0,78 ммоль/л 0,55-2,2 ммоль/л |
Кетоновые тела | 0,5-2,5 мг% | 5-25 мг/л |
Липиды общие | 350-800 мг% | 3,5-8 г/л |
Триглицериды | 50-150 мг% | 0,5-1,5 г/л |
Холестерин | 150-300 мг% | 4-7,8 ммоль/л |
Минеральные вещества | ||
Натрий плазмаэритроциты | 290-350 мг% 31-50 мг% | 125-150 ммоль/л 13,4-21,7 ммоль/л |
Калийплазмаэритроциты | 15-20 мг% 310-370 мг% | 3,8-5,1 ммоль/л 79,3-99,7 ммоль/л |
Хлориды | 340-370 мг% | 96-104 ммоль/л |
Кальций | 9-11 мг% | 2,2-2,7 ммоль/л |
Красные клетки (эритроциты)
Эритроциты составляют основную массу клеток крови. В 1 мм3 (мкл[1]
)
крови обычно содержится 4-5 млн. красных клеток. Образуются эритроциты в красном костном мозге, функционируют в кровяном русле и разрушаются, главным образом, в селезенке и в печени. Жизненный цикл этих клеток составляет 110-120 дней.
Эритроциты представляют собой двояковогнутые клетки, лишенные ядер, рибосом и митохондрий. В связи с этим в них не происходят такие процессы как синтез белка и тканевое дыхание. Основным источником энергии для эритроцитов является анаэробный распад глюкозы (гликолиз).
Основным компонентом красных клеток является белок гемоглобин
. На его долю приходится 30 % от массы эритроцита или 90 % от сухого остатка этих клеток.
По своему строению гемоглобин является хромопротеидом. Его молекула обладает четвертичной структурой и состоит из четырех субъединиц
. Каждая субъединица содержит один
полипептид
и один
гем
. Субъединицы отличаются друг от друга только строением полипептидов. Гем представляет собою сложную циклическую структуру из четырех пиррольных колец, содержащую в центре атом двухвалентного
железа
(Fe2+):
Основная функция эритроцитов –дыхательная
. С участием эритроцитов осуществляется перенос
кислорода
от легких к тканям и
углекислого газа
от тканей к легким.
В капиллярах легких парциальное давление кислорода около 100 мм рт. ст. (парциальное давление это часть общего давления смеси газов, приходящаяся на отдельный газ из этой смеси. Например, при атмосферном давлении 760 мм рт. ст. на долю кислорода приходится 152 мм рт. ст., т.е. 1/5 часть, так как в воздухе обычно содержится 20 % кислорода).
При таком давлении практически весь гемоглобин связывается с кислородом:
Hb + O2 ¾® HbO2
Гемоглобин Оксигемоглобин
Присоединяется кислород непосредственно к атому железа, входящему в состав гема, причем взаимодействовать с кислородом может только двухвалентное (восстановленное)
железо. Поэтому различные окислители
(например, нитраты, нитриты и т.п.),
превращая железо из двухвалентного в трехвалентное
(окисленное),
нарушают дыхательную функцию крови.
Образовавшийся комплекс гемоглобина с кислородом — оксигемоглобин
с током крови переносится в различные органы. Вследствие потребления кислорода тканями парциальное давление его здесь намного меньше, чем в легких. При низком парциальном давлении происходит диссоциация оксигемоглобина:
HbO2 ¾® Hb + O2
Степень распада оксигемоглобина зависит от величины парциального давления кислорода: чем меньше парциальное давление, тем больше отщепляется от оксигемоглобина кислорода. Например, в мышцах в состоянии покоя парциальное давление кислорода примерно 45 мм рт. ст. При таком давлении диссоциации подвергается только около 25 % оксигемо-
глобина. При работе умеренной мощности парциальное давление кислорода в мышцах примерно 35 мм рт. ст. и распаду подвергается уже около 50 % оксигемоглобина. При выполнении интенсивных нагрузок парциальное давление кислорода в мышцах снижается до 15-20 мм рт. ст., что вызывает более глубокую диссоциацию оксигемоглобина (на 75 % и более). Такой характер зависимости диссоциации оксигемоглобина от парциального давления кислорода позволяет значительно увеличить снабжение мышц кислородом при выполнении физической работы.
Усиление диссоциации оксигемоглобина также наблюдается при повышении температуры тела и увеличении кислотности крови (например, при поступлении в кровь больших количеств молочной кислоты при интенсивной мышечной работе),
что тоже способствует лучшему снабжению тканей кислородом.
В целом за сутки человек, не выполняющий физической работы, использует 400-500 л кислорода. При высокой двигательной активности потребление кислорода значительно возрастает.
Транспорт кровью углекислого газа
осуществляется из тканей всех органов, где происходит его образование в процессе катаболизма, в легкие, из которых он выделяется во внешнюю среду.
Бóльшая часть углекислого газа переносится кровью в форме солей — бикарбонатов
калия и натрия. Превращение CO2 в бикарбонаты происходит в эритроцитах с участием гемоглобина. В эритроцитах накапливаются бикарбонаты калия
(KHCO3),
а в плазме крови — бикарбонаты натрия
(NaHCO3).
С током крови образовавшиеся бикарбонаты поступают в легкие и превращаются там снова в углекислый газ, который удаляется из легких с
выдыхаемым воздухом. Это превращение происходит также в эритроцитах, но уже с участием оксигемоглобина, возникающего в капиллярах легких за счет присоединения кислорода к гемоглобину (см. выше).
Биологический смысл такого механизма переноса кровью углекислого газа заключается в том, что бикарбонаты калия и натрия обладают высокой растворимостью в воде, и поэтому в эритроцитах и в плазме они могут находиться в значительно бóльших количествах по сравнению с углекислым газом.
Небольшая часть CO2 может переноситься кровью в физически растворенном виде, а также в комплексе с гемоглобином, называемым карбгемоглобином
.
В состоянии покоя в сутки образуется и выделяется из организма 350-450 л CO2. Выполнение физических нагрузок приводит к увеличению образования и выделения углекислого газа.
Белые клетки
(лейкоциты
)
В отличие от красных клеток лейкоциты являются полноценными клетками с большим ядром и митохондриями, и поэтому в них протекают такие важнейшие биохимические процессы как синтез белков и тканевое дыхание.
В состоянии покоя у здорового человека в 1 мм3 крови содержится 6-8 тыс. лейкоцитов. При заболеваниях количество белых клеток в крови может как уменьшаться (лейкопения),
так и увеличиваться
(лейкоцитоз).
Лейкоцитоз может наблюдаться и у здоровых людей, например, после приема пищи или при выполнении мышечной работы
(миогенный лейкоцитоз).
При миогенном лейкоцитозе количество лейкоцитов в крови может повыситься до 15-20 тыс./мм3 и более.
Различают три вида лейкоцитов: лимфоциты
(25-26 %),
моноциты
(6-7 %) и
гранулоциты
( 67-70 %).
Лимфоциты образуются в лимфатических узлах и селезенке, а моноциты и гранулоциты — в красном костном мозге.
Лейкоциты выполняют защитную
функцию, участвуя в обеспечении
иммунитета
.
В самом общем виде иммунитет — это защита организма от всего «чужого». Под «чужим» подразумеваются различные чужеродные высокомолекулярные вещества, обладающие специфичностью и уникальностью своего строения и отличающиеся вследствие этого от собственных молекул организма.
В настоящее время выделяют две формы иммунитета: специфический
и
неспецифический
. Под специфическим обычно подразумевается собственно иммунитет, а неспецифический иммунитет – это различные факторы неспецифической защиты организма.
Система специфического иммунитета включает тимус
(вилочковая железа)
, селезенку, лимфатические узлы,
лимфоидные скопления(в носоглотке, миндалинах, аппендиксе и т. п.)
и
лимфоциты
. Основу этой системы составляют лимфоциты.
Любое чужеродное вещество, на которое способна реагировать иммунная система организма, обозначается термином антиген
. Антигенными свойствами обладают все «чужие» белки, нуклеиновые кислоты, многие полисахариды и сложные липиды. Антигенами могут быть также бактериальные токсины и целые клетки микроорганизмов, точнее макромолекулы, входящие в их состав. Кроме этого, антигенную активность могут проявлять и низкомолекулярные соединения, такие как стероиды, некоторые лекарства при условии их предварительного связывания с белком-носителем, например, альбумином плазмы крови.
(На этом основано обнаружение иммунохимичекским методом некоторых допинговых препаратов при проведении допинг-контроля).
Поступивший в кровяное русло антиген распознается особыми лейкоцитами — Т-лимфоцитами, которые затем стимулируют превращение другого вида лейкоцитов — В-лимфоцитов в плазматические клетки, которые далее в селезенке, лимфоузлах и костном мозге синтезируют особые белки — антитела
или
иммуноглобулины
. Чем крупнее молекула антигена, тем больше образуется различных антител в ответ на его поступление в организм. У каждого антитела имеются два связывающих участка для взаимодействия со строго определенным антигеном. Таким образом, каждый антиген вызывает синтез строго специфических антител.
Образовавшиеся антитела поступают в плазму крови и связываются там с молекулой антигена. Взаимодействие антител с антигеном осуществляется путем образования между ними нековалентных связей. Это взаимодействие аналогично образованию фермент-субстратного комплекса при ферментативном катализе, причем связывающий участок антитела соответствует активному центру фермента. Поскольку большинство антигенов являются высокомолекулярными соединениями, то к антигену одновременно присоединяется много антител.
Образовавшийся комплекс антиген-антитело
далее подвергается
фагоцитозу
. Если антигеном является чужеродная клетка, то комплекс антиген-антитело подвергается воздействию ферментов плазмы крови под общим названием
система комплемента.
Эта сложная ферментативная система в конечном итоге вызывает лизис чужеродной клетки, т.е. её разрушение. Образовавшиеся продукты лизиса далее также подвергаются
фагоцитозу
.
Поскольку в ответ на поступления антигена антитела образуются в избыточных количествах, их значительная часть остается на длительное время в плазме крови, во фракции g-глобулинов. У здорового человека в крови содержится огромное количество различных антител, образовавшихся вследствие контактов с очень многими чужеродными веществами и микроорганизмами. Наличие в крови готовых антител позволяет организму быстро обезвреживать вновь поступающие в кровь антигены. На этом явлении основано проведение профилактических прививок.
Другие формы лейкоцитов — моноциты
и
гранулоциты
участвуют в
фагоцитозе
. Фагоцитоз можно рассматривать как неспецифическую защитную реакцию, направленную, в первую очередь, на уничтожение поступающих в организм микроорганизмов. В процессе фагоцитоза моноциты и гранулоциты поглощают бактерии, а также крупные чужеродные молекулы и разрушают их своими лизосомальными ферментами. Фагоцитоз также сопровождается образованием активных форм кислорода, так называемых свободных радикалов кислорода, которые, окисляя липоиды бактериальных мембран, способствуют уничтожению микроорганизмов.
Как отмечалось выше, фагоцитозу также подвергаются комплексы антиген-антитело.
К факторам неспецифической защиты относятся кожные и слизистые барьеры, бактерицидность желудочного сока, воспаление, ферменты (лизоцим, протеиназы, пероксидазы)
, противовирусный белок — интерферон и др.
Регулярные занятия спортом и оздоровительной физкультурой стимулируют иммунную систему и факторы неспецифической защиты и тем самым повышают устойчивость организма к действию неблагоприятных факторов внешней среды, способствуют снижению общей и инфекционной заболеваемости, увеличивают продолжительность жизни.
Однако исключительно высокие физические и эмоциональные перегрузки, свойственные спорту высших достижений, оказывают на иммунитет неблагоприятное влияние. Нередко у спортсменов высокой квалификации наблюдается повышенная заболеваемость, особенно в период ответственных соревнований (именно в это время физическое и эмоциональное напряжение достигает своего предела!).
Очень опасны чрезмерные нагрузки для растущего организма. Многочисленные данные свидетельствуют, что иммунная система детей и подростков более чувствительна к таким нагрузкам.
В связи с этим важнейшей медико-биологической задачей современного спорта является коррекция иммунологических нарушений у спортсменов высокой квалификации путем применения различных иммуностимулирующих средств.
Кровяные пластинки
(тромбоциты
).
Тромбоциты — это безъядерные клетки, образующиеся из цитоплазмы мегакариоцитов — клеток костного мозга. Количество тромбоцитов в крови обычно 200-400 тыс./мм3. Основная биологическая функция этих форменных элементов — участие в процессе свертывания крови
.
Свертывание крови
— сложнейший ферментативный процесс, ведущий к образованию кровяного сгустка —
тромба
с целью предупреждения кровопотери при повреждении кровеносных сосудов.
В свертывании крови участвуют компоненты тромбоцитов, компоненты плазмы крови, а также вещества, поступающие в кровяное русло из окружающих тканей. Все вещества, участвующие в этом процессе, получили название факторы свертывания
. По строению все факторы свертывания кроме двух
(ионы Са2+ и фосфолипиды)
являются белками и синтезируются в печени, причем в синтезе ряда факторов участвует витамин К.
Белковые факторы свертывания поступают в кровяное русло и циркулируют в нем в неактивном виде — в форме проферментов (предшественников ферментов),
которые при повреждении кровеносного сосуда способны стать активными ферментами и участвовать в процессе свертывания крови. Благодаря постоянному наличию проферментов, кровь находится все время в состоянии «готовности» к свертыванию.
В самом упрощенном виде процесс свертывания крови можно условно разделить на три крупных этапа.
На первом этапе, начинающемся при нарушении целостности кровеносного сосуда, тромбоциты очень быстро (в течение секунд)
накапливаются в месте повреждения и, слипаясь образуют своего рода «пробку», которая ограничивает кровотечение. Часть тромбоцитов при этом разрушается, и из них в плазму крови выходят
фосфолипиды(один из факторов свертывания).
Одновременно в плазме за счет контакта с поврежденной поверхностью стенки сосуда или с каким либо инородным телом
(например, игла, стекло, лезвие ножа и т.п.)
происходит активация еще одного фактора свертывания —
фактора контакта
. Далее с участием этих факторов, а также некоторых других участников свертывания формируется активный ферментный комплекс, называемый
протромбиназой
или
тромбокиназой.
Такой механизм активации протромбиназы называется внутренним, так как все участники этого процесса содержатся в крови. Активная протромбиназа также образуется и по внешнему механизму. В этом случае требуется участие фактора свертывания, отсутствующего в самой крови. Этот фактор имеется в тканях, окружающих кровеносные сосуды, и попадает в кровяное русло лишь при повреждении сосудистой стенки. Наличие двух независимых механизмов активирования протромбиназы повышает надежность системы свертывания крови.
На втором этапе под влиянием активной протромбиназы происходит превращение белка плазмы протромбина
(это тоже фактор свертывания)
в активный фермент —
тромбин
.
Третий этап начинается с воздействия образовавшегося тромбина на белок плазмы — фибриноген
. От фибриногена отщепляется часть молекулы и фибриноген превращается в более простой белок —
фибрин-мономер
, молекулы которого спонтанно, очень быстро, без участия каких либо ферментов подвергаются полимеризации с образованием длинных цепей, называемых
фибрином-полимером
. Образовавшиеся нити фибрина-полимера являются основой кровяного сгустка — тромба. Вначале формируется студнеобразный сгусток, включающий в себя кроме нитей фибрина-полимера еще плазму и клетки крови. Далее из тромбоцитов, входящих в этот сгусток, выделяются особые сократительные белки
(типа мышечных),
вызывающие сжатие
(ретракцию)
кровяного сгустка.
В результате перечисленных этапов образуется прочный тромб, состоящий из нитей фибрина-полимера и клеток крови. Этот тромб располагается в поврежденном месте сосудистой стенки и препятствует кровотечению.
Все этапы свертывания крови протекают с участием ионов кальция.
В целом процесс свертывания крови занимает 4-5 минут.
В течение нескольких дней после образования кровяного сгустка, после восстановления целостности сосудистой стенки происходит рассасывание теперь уже не нужного тромба. Этот процесс называется фибринолизом
и осуществляется путем расщепления фибрина, входящего в состав кровяного сгустка, под действием фермента
плазмина(фибринолизина).
Данный фермент образуется в плазме крови из своего предшественника — профермента плазминогена под влиянием активаторов, которые находятся в плазме или же поступают в кровяное русло из окружающих тканей. Активации плазмина также способствует возникновение при свертывании крови фибрина-полимера.
В последнее время выяснено, что в крови еще имеется противосвертывающая
система, которая ограничивает процесс свертывания только поврежденным участком кровяного русла и не допускает тотального свертывания всей крови. В образовании противосвертывающей системы участвуют вещества плазмы, тромбоцитов и окружающих тканей, имеющие общее название
антикоагулянты.
По механизму действия большинство антикоагулянтов являются специфическими ингибиторами, действующими на факторы свертывания. Наиболее активными антикоагулянтами являются антитромбины, препятствующие превращению фибриногена в фибрин. Наиболее изученным ингибитором тромбина является
гепарин
, который предупреждает свертывание крови как in vivo, так и in vitro.
К противосвертывающей системе можно также отнести систему фибринолиза.
Кислотно-основной баланс крови
В покое у здорового человека кровь имеет слабощелочную реакцию: рН капиллярной крови (её обычно берут из пальца руки)
составляет примерно 7,4 , рН венозной крови равняется 7,36. Более низкое значение водородного показателя венозной крови объясняется бóльшим содержанием в ней углекислоты, возникающей в процессе метаболизма.
Постоянство рН крови обеспечивается находящимися в крови буферными системами. Основными буферами крови являются: бикарбонатный
(H2CO3/NaHCO3),
фосфатный
(NaH2PO4/Na2HPO4),
белковый
и
гемоглобиновый
. Самой мощной буферной системой крови оказалась гемоглобиновая: на её долю приходится 3/4 всей буферной емкости крови
(механизм буферного действия см. в курсе химии).
У всех буферных систем крови преобладает оснóвный (щелочной)
компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты
(пировиноградная и молочная кислоты — при распаде углеводов; метаболиты цикла Кребса и b-окисления жирных кислот; кетоновые тела, угольная кислота и др.).
Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг рН в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности.
Суммарное содержание в крови оснóвных компонентов всех буферных систем обозначается термином «Щелочной
резерв крови».
Чаще всего щелочной резерв рассчитывается путем измерения способности крови связывать СО2. В норме у человека его величина составляет 50-65 об. % , т.е. каждые 100 мл крови могут связать от 50 до 65 мл углекислого газа.
В поддержании постоянства рН крови также участвуют органы выделения (почки, легкие, кожа, кишечник).
Эти органы удаляют из крови избыток кислот и оснований.
Благодаря буферным системам и выделительным органам колебания величины рН в физиологических условиях незначительны и не опасны для организма.
Однако при нарушениях метаболизма (при заболеваниях, при выполнении интенсивных мышечных нагрузок)
может резко повыситься образование в организме кислых или щелочных веществ
(в первую очередь, кислых!).
В этих случаях буферные системы крови и экскреторные органы не в состоянии предотвратить их накопление в кровяном русле и удержать значение рН на постоянном уровне. Поэтому при избыточном образовании в организме различных кислот кислотность крови возрастает, а величина водородного показателя снижается. Такое явление получило название
ацидоз
. При ацидозе рН крови может уменьшаться до 7,0 — 6,8 ед.
(Следует помнить, что сдвиг рН на одну единицу соответствует изменению кислотности в 10 раз).
Снижение величины рН ниже 6,8 несовместимо с жизнью.
Значительно реже может происходить накопление в крови щелочных соединений, рН крови при этом увеличивается. Это явление называется алкалоз
. Предельное возрастание рН — 8,0.
У спортсменов часто встречается ацидоз, вызванный образованием в мышцах при интенсивной работе больших количеств молочной кислоты (лактата).
Глава 15.БИОХИМИЯ ПОЧЕК И МОЧИ
Моча, также как и кровь, часто является объектом биохимических исследований, проводимых у спортсменов. По данным анализа мочи тренер может получить необходимые сведения о функциональном состоянии спортсмена, о биохимических сдвигах, возникающих в организме при выполнении физических нагрузок различного характера. Поскольку при взятии крови для анализа возможно инфицирование спортсмена (например, заражение гепатитом или СПИД-ом)
, то в последнее время всё предпочтительнее становится исследование мочи. Поэтому тренер или преподаватель физического воспитания должны обладать информацией о механизме образования мочи, об её физико-химических свойствах и химическом составе, об изменении показателей мочи при выполнении тренировочных и соревновательных нагрузок.
[1] 1 мкл = 1·10-6 л
Плазма крови: состав, свойства, функции, для чего нужна, плазма при переливании
З. Нелли Владимировна, врач лабораторной диагностики НИИ трансфузиологии и медицинских биотехнологий, специально для СосудИнфо.ру (об авторах)
Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.
Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.
Вкратце об истории манипуляции
В Москве, начиная с 1926 года, функционирует НМИЦ гематологии – ведущий научный центр России. Оказывается, первые попытки переливания крови были зафиксированы еще в средневековье. Преимущественная часть из них успехом не увенчалась.
Причиной тому можно назвать практически полное отсутствие научных знаний в области трансфузиологии и невозможность установления групповой и резус-принадлежности.
Переливание плазмы крови при несовместимости антигенов обречено на смерть реципиента, поэтому в наши дни от практики введения цельной крови врачи отказались в пользу имплантации ее отдельных составляющих. Этот метод считается более безопасным и эффективным.
Риски для реципиента
Даже если переливание крови чем-то напоминает введение физраствора или медикаментов капельным путем, эта процедура является более сложной.
Гемотрансфузия – это манипуляция, приравненная к трансплантации биологической живой ткани.
Имплантируемые материалы, в том числе и кровь, содержат множество разнородных клеточных составляющих, которые несут чужеродные антигены, белки, молекулы.
Любое вмешательство несет в себе риски, не зависящие ни от квалификации врача, ни от предварительной подготовки к процедуре. При этом на любом этапе переливания плазмы (пробы или непосредственной инфузии) недопустимо поверхностное отношение медперсонала к работе, спешка или отсутствие достаточного уровня квалификации.
Главные составные части
Как любой концентрированный раствор, кровь можно разделить на жидкую часть (плазму) и форменные элементы, к которым относятся эритроциты, тромбоциты и лейкоциты. В норме поддерживается соотношение между ними 4:6 (40-45% приходится на элементы).
Этот показатель медики называют «гематокритом». Изменения говорят о повышенной густоте крови (больше 45%) из-за потери жидкости с потом, поносом, при массивных ожогах. Возможен обратный вариант: разжижение крови при нарушенном синтезе и недостатке форменных элементов, введении большого объема жидкости.