Гомоцистеин — маркер смертности от сердечно сосудистых заболеваний и старения мозга

Гипергомоцистеинемия — патологическое состояние, своевременная диагностика которого в подавляющем большинстве случаев позволяет назначить простое, дешевое, эффективное и безопасное лечение, в десятки раз снижающее риск многих жизненно опасных заболеваний и осложнений. Гомоцистеин — продукт превращения метионина, одной из восьми незаменимых аминокислот. Из гомоцистеина в дальнейшем может образовываться другая аминокислота, цистеин, не входящая в число незаменимых аминокислот. Избыток гомоцистеина, накапливающегося в организме, может обратно превращаться в метионин. Кофакторами ферментов метаболических путей метионина в организме выступают витамины, самыми важными из которых являются фолиевая кислота, пиридоксин (B6), цианокобаламин (B12) и рибофлавин (B1). Гомоцистеин не является структурным элементом белков, а потому не поступает в организм с пищей. В физиологических условиях единственным источником гомоцистеина в организме является превращение метионина. Гомоцистеин обладает выраженным токсическим действием на клетку. Для защиты клетки от повреждающего действия гомоцистеина существуют специальные механизмы выведения его из клетки в кровь. В случае появления избытка гомоцистеина в организме он накапливается в крови, и основным местом повреждающего действия этого вещества становится внутренняя поверхность сосудов. Гипергомоцистеинемия приводит к повреждению и активации эндотелиальных клеток (клеток выстилки кровеносных сосудов), что значительно повышает риск развития тромбозов. Высокие уровни гомоцистеина вызывают «окислительный стресс», усиливают агрегацию тромбоцитов и вызывают активацию коагуляционного каскада, ведут к нарушению эндотелийзависимой вазодилатации и стимуляции пролиферации гладкомышечных клеток. Таким образом, гипергомоцистеинемия оказывает неблагоприятное влияние на механизмы регуляции сосудистого тонуса, обмен липидов и коагуляционный каскад, тем самым способствуя развитию разнообразных заболеваний сосудов. Еще в 1969 г. K.McCully впервые, наблюдая детей с высоким (более 100 мкмоль/л) уровнем гомоцистеина крови, отметил, что у них рано возникают тяжелые формы поражения артерий. Исходя из этого, было сделано предположение о том, что высокий уровень гомоцистеинемии является фактором риска развития как атеросклеротического, так и тромбогенного поражения сосудов.

Введение

Гомоцистеин является продуктом превращения метионина, одной из восьми незаменимых аминокислот. Из гомоцистеина в дальнейшем может образовываться другая аминокислота, цистеин, не входящая в число незаменимых аминокислот.

Избыток накапливающегося в организме гомоцистеина может обратно превращаться в метионин. Кофакторами ферментов метаболических путей метионина в организме выступают витамины, самыми важными из которых являются фолиевая кислота, пиридоксин (витамин B6), цианокобаламин (витамин B12) и рибофлавин (витамин B1).

Гомоцистеин не является структурным элементом белков, а потому не поступает в организм с пищей. В физиологических условиях единственным источником гомоцистеина в организме является превращение метионина.

Гомоцистеин обладает выраженным токсическим действием на клетку. Для защиты клетки от повреждающего действия гомоцистеина существуют специальные механизмы выведения его из клетки в кровь. Поэтому, в случае появления избытка гомоцистеина в организме, он начинает накапливаться в крови, и основным местом повреждающего действия этого вещества становится внутренняя поверхность сосудов.

Для превращения избытка гомоцистеина в метионин нужны высокие концентрации активной формы фолиевой кислоты (5-метилтетрагидрофолата). Основным ферментом, обеспечивающим превращение фолиевой кислоты в ее активную форму, является 5,10 метилентетрагидрофолат-редуктаза (MTHFR). Снижение активности этого фермента — одна из важных причин накопления гомоцистеина в организме. (рис. 1)

Рис. 1

Обратите внимание на то, что гомоцистеин может образовываться только из метионина. Гомоцистеин может превращаться либо в цистатионин, который в дальнейшем используется для синтеза цистеина, либо в метионин. На всех ключевых этапах метаболизма метионина и гомоцистеина важную роль играют витамины. Красным цветом обозначен цикл превращения метионина, зеленым — цикл превращения фолиевой кислоты. MTHFR — 5,10 метилентетрагидрофолат-редуктаза. Метионин, гомоцистеин и фолиевая кислота являются аминокислотами. Аминокислоты являются важнейшими субстратами метаболизма азота в организме. От аминокислот берут начало белки, ферменты, пуриновые и пиримидиновые основания (и нуклеиновые кислоты), пиррольные производные (порфирины), биологически активные соединения пептидной природы (гормоны), а также ряд других соединений. При необходимости аминокислоты могут служить источником энергии, главным образом за счет окисления их углеродного скелета. В живых организмах аминокислоты образуют пул, величина которого во взрослом состоянии остается в физиологических условиях постоянной. Она соответствует разнице между поступлением аминокислот извне или иногда из эндогенных источников, и расходом аминокислот, служащих субстратами в анаболических и катаболических процессах. Живые организмы не запасают аминокислоты и белки впрок, поэтому необходимое количество азота (лучше в форме аминокислот) должно поступать с пищей. Во взрослом организме в физиологических условиях количество поступающего и выводящегося азота одинаково (азотное равновесие). Аминокислоты из экзогенных источников (из пищи) всасываются в пищеварительном тракте и переносятся кровью в печень и другие ткани и органы, где они далее используются. Кроме того, источником аминокислот (эндогенный источник) могут служить тканевые белки организма, которые постоянно подвергаются метаболизму с освобождением входящих в них аминокислот. Эти аминокислоты используются для синтеза новых белков лишь в малой степени, однако эндогенные источники очень важны, поскольку они обеспечивают около двух третей всего пула аминокислот, и только одна треть аминокислот поступает из пищи. Незаменимые аминокислоты — это те аминокислоты, которые не могут синтезироваться данным организмом. Для человека это валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин, триптофан и, в определенных условиях, также аргинин и гистидин.

Результаты клинических исследований, проведенных в последние годы

Проведенные клинические исследования (HOPE) 2 [7] и NORVIT [1] показали, что назначение фолиевой кислоты, витамина B6 и витамина B12 не уменьшает количество повторных инфарктов. Однако Refsum H. и Smith A.D. высказали ряд критических замечаний по поводу данных, полученных в этих исследованиях, которые являются весьма вероятными [8]:

  • Средние уровни гомоцистеина, витамина B6, витамина B12 и фолиевой кислоты у пациентов были в пределах нормального диапазона в обоих исследованиях. Поэтому никакого большого эффекта ожидать не следовало.
  • 70% пациентов в исследовании (HOPE) 2 получали продукты из муки, обогащенной фолиевой кислотой. Поэтому контрольная группа также имела хорошие уровни гомоцистеина в крови.
  • Продолжительность исследований (2-3 года) была слишком коротка, так как атеросклероз развивается за десятилетия.
  • Повторный анализ данных, полученных в исследовании VISP (при исключении пациентов с почечной недостаточностью), показал снижение количества инсультов на 21% [9, 10].
  • С 1998 года в США и Канаде были введены Национальные программы по обогащению муки фолиевой кислотой. Проведенные исследования показали значительное сокращение смертности у женщин от инсульта через 5 лет (см. рис. 1). Уровень гомоцистеина в крови у населения также уменьшился [12].
  • Исследование мужчин и женщин в возрасте 50-70 лет с увеличенными уровнями гомоцистеина в крови показало, что при назначении фолиевой кислоты в течение более 3-х лет уровень гомоцистеина уменьшился на 26% [2].

Снижение смертности от инсульта у женщин в США и Канаде после обогащения муки фолиевой кислотой показано на диаграмме ниже:

Рис. 1. Летальность от инсульта у женщин в США и Канаде до и после обогащения муки фолиевой кислотой (число случаев на 100.000) [12]

Среднее снижение летальности от инсульта в Канаде было -1,0% ежегодно с 1990 до 1997 года и увеличилось до -5,4 % ежегодно с 1998 до 2002 года (p < 0,0001).

История вопроса

В 1932 г. De Vigneaud открыл гомоцистеин как продукт деметилирования метионина. Через несколько лет был открыт и второй путь метаболизма гомоцистеина — транссульфурация. В 1962 г. был открыт синдром гомоцитеинурии (гомоцистеин в моче), связанный с дефицитом фермента цистатионин синтазы. При данном заболевании отмечаются умственная отсталость, деформации костей, смещение хрусталика, прогрессирующие сердечно-сосудистые заболевания и очень высокая частота тромбоэмболии. Kilmer McCully углубленно изучал больных с высокими уровнями гомоцистеина в крови и обнаружил связь гипергомоцистеинемии с развитием тяжелых сосудистых заболеваний. Эти исследования послужили основой предложенной им в 1975 г. гомоцистеиновой теории атеросклероза. Он был убежден, что существует связь между уровнем гомоцистеина, витаминной недостаточностью и заболеваниями сердца.

Исследования последних 15 лет подтвердили и углубили гомоцистеиновую теорию развития сосудистых нарушений. Ежегодно появляются десятки публикаций, посвященных разным сторонам этой проблемы. Однако, к сожалению, в настоящее время только немногие лаборатории могут определять уровень гомоцистеина в крови.

Причины повышения уровня гомоцистеина в крови

В течение жизни уровень гомоцистеина в крови постепенно повышается. До периода полового созревания уровни гомоцистеина у мальчиков и девочек примерно одинаковы (около 5 мкмоль/л). В период полового созревание уровень гомоцистеина повышается до 6-7 мкмоль/л, у мальчиков это повышение более выражено, чем у девочек.

У взрослых уровень гомоцистеина колеблется в районе 10-11 мкмоль/мл, у мужчин этот показатель обычно выше, чем у женщин. С возрастом уровень гомоцистеина постепенно возрастает, причем у женщин скорость этого нарастание выше, чем у мужчин. Постепенное нарастание уровня гомоцистеина с возрастом объясняют снижением функции почек, а более высокие уровни гомоцистеина у мужчин — большей мышечной массой.

Во время беременности в норме уровень гомоцистеина имеет тенденцию к снижению. Это снижение происходит обычно на границе первого и второго триместров беременности, и затем остается относительно стабильным. Нормальные уровни гомоцистеина восстанавливаются через 2-4 дня после родов. Считается, что снижение уровня гомоцистеина при беременности благоприятстствует плацентарному кровообращению. Уровень гомоцистеина в крови обратно пропорционален массе плода и новорожденного.

Уровень гомоцистеина в крови может повышаться по многим причинам. Одним из факторов является повышенное поступление метионина с пищей. Поэтому во время беременности дополнительное назначение метионина в таблетках, до сих пор практикуемое некоторыми врачами, следует проводить с осторожностью и под контролем уровня гомоцистеина. Самыми частыми причинами повышения уровня гомоцистеина являются витаминодефицитные состояния. Особенно чувствителен организм к недостатку фолиевой кислоты и витаминов B6, B12 и B1. Предполагается, что повышенную склонность к гипергомоцистеинемиии имеют курящие. Потребление больших количеств кофе является одним из самых мощных факторов, способствующих повышению уровня гомоцистеина в крови. У лиц, выпивающих более 6 чашек кофе в день, уровень гомоцистеина на 2-3 мкмоль/л выше, чем у не пьющих кофе. Предполагается, что негативное действие кофеина на уровень гомоцистеина связано с изменением функции почек. Уровень гомоцистеина часто повышается при сидячем образе жизни. Умеренные физические нагрузки способствуют снижению уровня гомоцистеина при гипергомоцистеинемии. Потребление небольших количеств алкоголя может снижать уровень гомоцистеина, а большие количества спиртного способствуют росту гомоцистеина в крови.

На уровень гомоцистеина влияет прием целого ряда лекарств. Механизм их действия может быть связан с влиянием на действие витаминов, на продукцию гомоцистеина, на функцию почек, и на уровень гормонов. Особенное значение имеют метотрексат (антагонист фолиевой кислоты, часто применяется для лечения псориаза), противосудорожные препараты (фенитоин и др., опустошают запасы фолиевой кислоты в печени), закись азота (препарат, использующийся при наркозе и при обезболивании родов, инактивирует витамин B12), метформин (препарат, использующийся для лечения сахарного диабета и синдрома поликистозных яичников) и антагонисты H2-рецепторов (влияют на всасывание витамина B12), эуфиллин (подавляет активность витамина B6, часто применяется в акушерских стационарах для лечения гестозов). На уровень гомоцистеина может неблагоприятно влиять прием гормональных контрацептивов, но это бывает не всегда.

Еще одним фактором, способствующим повышению уровня гомоцистеина, являются некоторые сопутствующие заболевания. Самыми важными из них являются витаминодефицитные состояния и почечная недостаточность. Заболевания щитовидной железы, сахарный диабет, псориаз и лейкозы могут способствовать значительному росту уровня гомоцистеина в крови.

Одной из главных причин витаминодефицитных состояний, приводящих к гипергомоцистеинемии, являются заболевания желудочно-кишечного тракта, соопровождающиеся нарушением всасывания витаминов (синдром мальабсорбции). Это объясняет более высокую частоту сосудистых осложнений при наличии хронических заболеваний ЖКТ, а также то, что при B12-витаминодефиците частой причиной смерти служит не анемия, а инсульты и инфаркты.

Одним из важных факторов, способствующих росту гомоцистеина в крови является наследственная предрасположенность. Наиболее изученным является дефект фермента 5,10 метилентетрагидрофолат-редуктазы (MTHFR). MTHFR обеспечивает превращение 5,10-метилентетрагидрофолата в 5-метил-тетрагидрофолат, являющийся главной циркулирующей в организме формой фолиевой кислоты. В свою очередь, фолиевая кислота используется во многих биохимических путях, включая метилирование гомоцистеина и других веществ и синтез нуклеотидов. Ген MTHFR находится на первой хромосоме в локусе 1p36.3. Существует несколько аллельных вариантов этого фермента, вызывающих тяжелую недостаточность MTHFR, но большинство из этих вариантов очень редки. Практическое значение имеют два аллеля: термолабильный аллель C677T и аллель A1298C (иногда обозначается как C1298A). Аллель С677Т является результатом точечной мутации, при которой в позиции 677 аланин заменен на валин. При этом нормальный генотип обозначается как СС (на обеих хромосомах нормальные варианты гена), гетерозиготный — как СТ (носительство, на одной хромосоме — нормальный ген, а на другой — мутантный), гомозиготный по мутантному гену генотип — как TT (на обеих хромосомах мутантный ген). В настоящее время ДНК-диагностика мутации C677T проводится в некоторых медицинских центрах Москвы. Особенности данной мутации представлены на рис. 2.

Рис. 2 C677T-полиморфизм 5,10 метилентетрагидрофолат-редуктазы (MTHFR) влияет на распределение соединений фолиевой кислоты (выделены зеленым цветом), используемых для синтеза ДНК и РНК, и 5-метилтетрагидрофолата, необходимого для реметилирования гомоцистеина (Hсy), а значит — для синтеза белка. Секторная диаграмма показывает распределение генотипов, типичное для европейских популяций, а размеры стрелок показывают относительную ферментную активность MTHFR. Сокращения: AdoMet, S-аденозилметионин; CHOTHF, формилтетрагидрофолат; CHTHF, метенилтетрагидрофолат; CH2THF, 5,10-метилентетрагидрофолат; CH3DNA, метилированная ДНК; CH3THF, 5-метилтетрагидрофолат; DHF, дигидрофолат; dTMP, диокситимидин-5’-монофосфат;dUMP, деоксиуридин-5’-монофосфат; FAD, флавинадениндинуклеотид; Hcy, гомоцистеин; Met, метионин; THF, тетрагидрофолат; protein, белок; DNA, ДНК; RNA, РНК; purines, пуриновые основания. CC и TT — гомозиготные генотипы, CT — гетерозиготный генотип. При снижении активности фермента, 5-метилтетрагидрофолата может не хватать для эффективного перевода гомоцистеина в метионин, и гомоцистеин начинает накапливаться в организме.

Уровень гомоцистеинаЧастота1Частые причины1
Умеренное повышение (15-30 мкмоль/л)10%Нездоровый образ жизни, включая плохое и несбалансированное питание Полиморфизм MTHFR в сочетании с низким фолатным статусом (S-фолат на нижней границе нормы) Недостаток фолиевой кислоты Умеренный дефицит витамина B12 Почечная недостаточность Гиперпролиферативные нарушения Прием лекарств
Повышение средней степени тяжести (30-100 мкмоль/л)Полиморфизм MTHFR в сочетании с дефицитом фолиевой кислоты Умеренный дефицит витамина B12 Тяжелый дефицит фолиевой кислоты Тяжелая почечная недостаточность
Повышение тяжелой степени (>100 мкмоль/л)0,02%Тяжелый дефицит витамина B12 Дефицит CBS (гомозиготная форма)

Таблица 1. Частые причины различных степеней гипергомоцистеинемии

1Данные о причинах гомоцистеинемии и ее частоте даны на основании европейских исследований. Эти данные могут значительно варьировать в разных популяциях. По нашим данным, частота умеренной гипергомоцистеинемии в Москве значительно превышает среднеевропейские цифры. Умеренное повышение гомоцистеина у москвичек часто определяется даже на фоне приема больших доз витаминов, что может быть связано с высокой частотой нарушений усвоения витаминов в желудке и кишечнике. Сокращения: CBS — цистатионин-бета-синтаза

Гомоцистеин – предиктор патологических изменений в организме человека

Гомоцистеин (Hcy) – природная серосодержащая аминокислота, не встречающаяся в белках. Hcy – продукт метаболизма метионина (Met) – одной из 8 незаменимых аминокислот организма.

В плазме крови свободный (восстановленный) Hcy присутствует в небольших количествах 1–2% (рис. 1). Примерно 20% находится в окисленном состоянии, преимущественно в виде смешанного дисульфида цистеинил гомоцистеина и гомоцистина. Около 80% Hcy связывается с белками плазмы крови, в основном с альбумином, образуя дисульфидную связь с цистеином–34.

Метаболизм гомоцистеина происходит с участием ряда ферментов, основные из которых: метилентетрагидрофолатредуктаза (МТГФР) и цистатион–β–син­те­таза (ЦВС).

Помимо ферментов, важную роль в метаболизме гомоцистеина выполняют витамины В6, В12 и фолиевая кислота.

Met преобразуется в S–аденозилметионин (SAM) при участии фермента метионинаденозилтрансферазы. В результате реакций метилирования, осуществляемых метилтрансферазами, SAM превращается в S–аде­но­зилгомоцистеин (SAH). В дальнейшем SAH подвергается гидролизу посредством SAH–гидролазы с образованием Hcy и аденозина. Этот каскад ферментативных реакций, обозначаемый как трансметилирование, происходит едва ли не в каждой клетке человеческого организма.

SAM–зависимые реакции трансметилирования важ­ны для множества клеточных процессов, таких как метилирование нуклеиновых кислот, протеинов и фосфолипидов.

Существует несколько путей биотрансформации Hcy в организме человека [6]. Он может обратно преоб­ра­зоваться в Met двумя способами (рис. 2). Во–первых, Met может быть восстановлен из Hcy с помощью метионинсинтазы (MC), использующей в качестве донора метильной группы 5–метил–тетрагидрофолат (5–MeTHF). Этот путь реметилирования распространен повсеместно, в основном в клетках печени, а у некоторых видов в почках. Во–вторых, глицин–бетаин (NNN–триметилглицин) мо­жет также повторно метилироваться до Met с участием бетаингомоцистеинметилтрансферазы (БГМТ). Hcy может также превращаться в цистеин. Под действием цистатионин–β–синтазы Hcy и серин образуют цистатионин, который может разрушаться цистатионин–γ–лиазой до цистеина и α–ке­то­бутирата, метаболизируемого далее ферментами до сукцинил–КоА. Эта серия реакций, превращающая Hcy в цистеин, происходит в печени, почках, тонком кишечнике и поджелудочной железе. Hcy также может выводиться из клеток в кровь, но транспортеры этого процесса пока не идентифицированы.

Эти два пути превращения Hcy (реметилирование до Met, требующее наличия фолата и В12, и превращение в цистатионин, требующее пиродоксаль фосфата) координируются S–аденозилметионином, действующим как аллостерический ингибитор метилентетрагидрофолатредуктазы и как активатор цистатионин–b–син­тазы.

В многочисленных популяционных исследованиях нижний уровень содержания гомоцистеина обычно определяется достаточно однозначно (5 μмоль/л), а вот верхний предел обычно варьирует между 10 и 20 mмоль/л – в зависимости от возраста, пола, этнической группы и особенностей потребления фолатов.

Различные наследственные и приобретенные нарушения в организме приводят к тому, что Hcy не утилизируется. В этом случае он накапливается в организме и становится для него опасным, вызывая ряд патологических эффектов. Различают несколько форм гипергомоцистеинемии (ГГЦ) [2].

Тяжелая форма ГГЦ (>100
m
моль/л)

Причиной могут быть:

– наследственная гомоцистеинурия, например, вследствие гомозиготности по дефектным генам энзимов биосинтеза метионина – цистатионин–b–синтазе или 5,10–метилентетрагидрофолатредуктазе;

– наследственные нарушения утилизации витамина В12;

– серьезный дефицит витамина В12.

Умеренная форма ГГЦ (30–100
mмоль/л)
Причины:

– тяжелое нарушение функции почек (снижение клиренса гомоцистеина почками);

– умеренный дефицит В12;

– серьезный дефицит фолатов.

Легкая форма ГГЦ (10–30 μмоль/л)

Причинами могут служить:

– ‑гетерозиготность по дефектному гену цистатионин–b–синтазы;

– ‑гомозиготность по замене основания С677Т в гене 5,10–метилентетрагидрофолатредуктазы;

– почечная недостаточность;

– трансплантация почек;

– небольшой дефицит фолата и витамина В12;

– недостаток тироидных гормонов;

– алкоголизм;

– медикаменты.

Метаболизм Hcy сильно зависит от кофакторов – производных витаминов. Поэтому дефицит любого из витаминов (В12, фолиевой кислоты и В6) может привести к ГГЦ.

Генетические мутации также могут вызвать гипергомоцистеинемию, в частности, дефекты энзимов – ци­ста­тионин β–синтазы и цистатионин γ–лиазы или метилентетрагидрофолатредуктазы.

При исследовании полиморфизма по гену метилентетрагидрофолат редуктазы (MTHER), связанного с заменой 677С→T, установлено, что у 10–16% популяции наблюдается гомозиготность по варианту ТТ, а носители этого варианта характеризуются повышенным содержанием Hcy. Если же лица, генетически предрасположенные к повышенному уровню Hcy, курят и употребляют много кофе, то они становятся особенно чувствительны к увеличению концентрации Hcy. Генотип c заменой 677С→T в гене MTHER предрасположен к повышенному риску дефектов нервной трубки и сердечно–сосудистых заболеваний [7,8].

Исследованиями в течение последних 15 лет установлено, что гомоцистеин является ранжированным независимым фактором риска сердечно–сосу­ди­стых заболеваний (ССЗ) — инфаркта миокарда, ин­сульта и венозной тромбоэмболии, атеросклероза [9,10]. По­ла­гают, что гипергомоцистеинемия – более ин­формативный показатель развития болезней сердечно–сосуди­стой системы, чем холестерин [11].

Hcy повреждает стенки сосудов, делая их поверхность рыхлой. На поврежденную поверхность осаждаются холестерин и кальций, образуя атеросклеротическую бляшку. Повышенный уровень Hcy усиливает тромбообразование. Повышение уровня гомоцистеина крови на 5 мкмоль/л приводит к увеличению риска атеросклеротического поражения сосудов на 80% у женщин и на 60% у мужчин.

Тормозя работу противосвертывающей системы, гомоцистеинемия является одним из звеньев патогенеза ранней тромбоваскулярной болезни, при ее наличии увеличивается риск развития тромбозов и глубоких вен. Особому риску подвергаются больные сахарным диабетом.

Показано, что при увеличении уровня Hcy в плазме на 2,5 μмоль/л риск инфаркта миокарда возрастает на 10%, а риск инсульта – на 20% [12]. Повышенный уровень гомоцистеина является серьезным предиктором смертности людей с предшествующими ССЗ или выяв­лен­ными другими факторами риска [13].

Механизмами влияния гомоцистеинемии на сосуды могут быть повреждения под действием окислительного стресса, нарушения выделения окиси азота, изменения гомеостаза и активации воспалительных путей.

Возможен и вариант, что высокие уровни Hcy являются только маркером ССЗ, то есть связь между ними опосредована другими факторами (нарушением функции почек, дефицитом фолатов и витаминов В12 и В6), которые влияют как на уровень Hcy, так и на развитие сосудистых заболеваний.

Гипергомоцистеинемия часто встречается среди пациентов с хронической почечной недостаточностью (когда функции почек снижены, но не настолько, чтобы требовалась замещающая терапия) и наблюдается почти всегда на конечной стадии почечных заболеваний [14]. Этот факт особенно важен для части пациентов, у которых имеется сердечно–сосудистая недостаточность: риск летального исхода у них повышается в 30 раз по сравнению с основной группой пациентов.

При почечной недостаточности уровни Hcy возрастают, большинство пациентов на диализе (>85%) демонстрируют умеренную степень гипергомоцистеинемии. Клиренс креатинина, определяющий наличие почечной недостаточности, обратно коррелирует с уровнем плазменного Hcy. Исследования, проведенные на здоровых людях и больных диабетом, подтвердили обратную взаимосвязь между уровнем Hcy и функцией почек, а также роль креатинина как маркера почечной недостаточности [15].

Микротромбообразование приводит к нарушению маточного и фетоплацентарного кровообращения, что может быть причиной бесплодия и невынашивания беременности, в связи с чем определение уровня Hcy актуально в акушерской практике для прогнозирования возможных осложнений во время беременности и родов. Изменение уровня Hcy может быть связано с недостатком фолатов, оказывающим множественные эффекты на внутриутробное развитие плода [16]. На более поздних сроках беременности гипергомоцистеинемия яв­ля­ется причиной развития хронической фетоплацентарной недостаточности, хронической внутриутробной гипоксии плода, и как следствие – внутриутробной гипотрофии плода. Повышение уровня гомоцистеина – одна из причин рождения детей с пороками развития (дефекты нервной трубки). Ввиду этих обстоятельств рекомендуется проверять уровень гомоцистеина у женщин–рожениц с бывшими ранее акушерскими осложнениями или имеющих родственников, у которых были инсульты, инфаркты и тромбозы в достаточно раннем возрасте.

Имеется целый ряд посылок, указывающих на связь между увеличением содержания гомоцистеина и нарушениями когнитивной функции и психическими расстройствами. Повышение уровня Hcy в крови до 14,5 μмоль/л приводит к двукратному увеличению риска возникновения болезни Альцгеймера в возрасте свыше 60 лет [17]. Показано, что увеличение концентрации Hcy в крови прямо коррелирует с когнитивными расстройствами у лиц пожилого возраста [18].

Среди факторов, влияющих на содержание гомоцистеина в крови, следует выделить описанную выше генетическую предрасположенность к повышению уровня Hcy, курение, диету (употребление большого количества белковых продуктов, кофе, витаминов группы В, фолатов).

Популяционные исследования позволили проанализировать связь пищевых факторов (витаминов группы В, белков и метионина), курения, потребления кофе, биохимических детерминант (содержания в плазме креатинина, В6, В12, фолатов) и других факторов (индекс массы тела, артериальное давление и антигипертензивные препараты) с уровнем гомоцистеина. Кроме кровяного давления, все остальные факторы были связаны с со­держанием Hcy. Например, у курящих содержание Hcy было на 1,5 μмоль/л выше, чем у некурящих. Содержание фолатов было наиболее выраженной детерминантой уровня Hcy. Различия в уровне Hcy при самой высокой и самой низкой концентрации фолатов составили 4 μмоль/л, а при действии других факторов находились в интервале 0,5–2,0 μмоль/л. Детерминанты содержания Нcy сильно варьировали в зависимости от пола и возраста, а также от особенностей национальной диеты в разных странах, связанных с содержанием витаминов группы В [19].

Самой частой причиной ГГЦ является дефицит фолиевой кислоты, а также нехватка витамина В

12, которая даже при достаточном поступлении фолиевой кислоты может вести к накоплению гомоцистеина.

Некоторые препараты (например, пеницилламин, циклоспорин, метотрексат, карбамазепин, фенитоин, 6–азауридин, закись азота), могут повышать уровень го­мо­цистеина. Механизм действия этих факторов обус­лов­лен либо прямым, либо непрямым антагонизмом с фер­ментами или кофакторами, участвующими в метаболизме Hcy.

Причинами увеличения содержания Hcy в крови мо­жет являться и ряд заболеваний (хроническая почечная недостаточность, гипофункция щитовидной железы, В12–дефицитная анемия, онкологические заболевания).

Неоднозначным является влияние физической нагрузки на уровень Hcy. Так, показано [20], что после марафона в организме у бегунов (за исключением профессиональных спортсменов) отмечается резкое повышение содержания Hcy. В других работах повышение концентрации Hcy, наблюдаемое у спортсменов, связывают с диетой [21]. Дозированный прием витаминов В6, В12 и фолиевой кислоты позволяет предупредить возможные осложнения.

Хотя еще точно не доказано, что терапия, снижающая уровни гомоцистеина, уменьшает риск CCЗ, но она является недорогой и продолжает применяться. Целью терапии должно быть снижение уровня гомоцистеина у пациентов с высоким риском сердечных заболеваний до 10 μмоль/л

.

У пациентов с низкой и умеренной формой гипергомоцистенемии можно добиться снижения уровня Hcy до нормального, назначая либо фолиевую кислоту от 0,4 до 5 мг/сут., либо витамин B12 в дозе от 0,5 до 1 мг/сут., либо используя оба препарата. Лечение менее эффективно у пациентов с почечными заболеваниями.

Общепризнанным является применение с целью лечения гомоцистеинемии фолиевой кислоты, фолиевой кислоты в комбинации с витаминами B6 и B12 и комбинации витаминов B6 и B12, применение препаратов типа кардоната (комбинированный препарат, содержащий коэнзимы В1, В6, В12, а также карнитин и лизин). Фолиевая кислота, первоначально обнаруженная в шпинате, присутствует в большинстве растительных продуктов, имеющих листья (потому и называется так, от латинского слова folium – лист), в зеленых овощах, рыбе и печени.

Но есть данные, которые свидетельствуют о том, что терапевтическое вмешательство при повышении уровня Hсy не должно ограничиваться восполнением недостатка витаминов и фолатов и борьбой с общеизвестными факторами риска, такими как курение и избыточное потребление кофе.

Так, показано, что терапия высокими дозами фолиевой кислоты, витаминами В6 и В12 не приводит к снижению смертности и частоты сердечно–сосудистых событий у больных с тяжелой почечной недостаточностью, а потому не может быть рекомендована с этой целью. Более того, при введении экзогенной фолиевой кислоты происходит кратковременное повышение уровня Hcy. Среди возможных причин низкой эффективности витаминотерапии авторы отмечают исключительную клиническую тяжесть и плохой краткосрочный прогноз включенных пациентов, достижение нормальных уровней Hcy только у трети участников, побочные эффекты терапии витаминами, нивелирующие ее полезное действие. Одной из причин неудачи снижения Hcy авторы считают то, что его уровень является маркером, а не причиной ССЗ [22].

Перспективным направлением в лечении гомоцистеинемии может быть применение ингибиторов гидроксиметилглутарил–КоА–редуктазы (статинов). Есть данные, позволяющие предполагать, что снижение уровня гомоцистеина является одним из эффектов применения статинов у пациентов с ССЗ [23].

В заключение следует заметить, что повышение уровня Hcy в крови связано как вообще с увеличением смертности в популяции, так и с заболеваниями сердечно–сосудистой системы, в частности [24]. По некоторым оценкам, если бы удалось снизить уровень Hcy на 40%, то это привело бы к сохранению 8 лет жизни на 1000 мужчин и 4 лет жизни на 1000 женщин. Это обстоятельство стимулирует внедрение мониторинга концентрации Hcy в широкую клиническую практику.

Литература 1. Friedman A.N., Bostom A.G., Selhub J. et al. The kidney and homocysteine metabolism. J.Am Soc. Nephrol.,2001, v. 12, p. 2181–2189. 2. Lentz S.R., Haynes W.G. Homocysteine: Is it a clinically important cardiovascular risk factor? Clev. Clin. J. Med., 2004, v. 71, p. 729–734. 3. Daly S., Cotter A., Molloy A.E., Scott J. Homocysteine and folic acid: implications for pregnancy. Semin. Vasc. Med., 2005,v. 5, p. 190–200. 4. Ciaccio M., Bivona G., Bellia C. Therapeutical approach to plasma homocysteine and cardiovascular risk reduction Therap. and Clin. Risk Manag., 2008, v. 4, p. 219–224. 5. Vollset S.E., Refsum H., Ueland P.M. Population determinants of homocysteine. Am J.Clin Nutr., 2001,v. 73, p. 499–500. 6. Szegedi S.S., Castro C.C., Koutmos M., Garrow T.A. Betaine–homocysteine s–methyltransferase–2 is an s–methylmethionine–homocysteine methyltransferase. J. Biol. Chem., 2008, v. 283, p. 8939–8945. 7. Kraus J.P. Biochemistry and molecular genetics of cystathionine beta–synthase deficiency. Eur. J. Pediatr.,1998, v. 157, p. 50–53. 8. Trabetti E. Homocysteine, MTHFR gene polymorphisms, and cardio–cerebrovascular risk. J. Appl. Genet., 2008, v. 49, p. 267–282. 9. Naess I.A., Christiansen S.C., Romundstad P.R. et al. Prospective study of homocysteine and MTHFR 677TT genotype and risk for venous thrombosis in a general population—results from the HUNT 2 study. Br. J. Haematol., 2008, v. 141, p. 529–535. 10. Moat S.J. Plasma total homocysteine: instigator or indicator of cardiovascular disease? Ann. Clin. Biochem., 2008, v. 45, p. 345–348. 11. Potter K. Homocysteine and cardiovascular disease: should we treat? Clin. Biochem. Rev., 2008, v. 29, p. 27–30. 12. Virtanen J.K., Voutilainen S., Alfthan G. Homocysteine as a risk factor for CVD mortality in men with other CVD risk factors: the Kuopio Ischaemic Heart Disease Risk Factors (KIHD) Study. J. Intl. Med., 2005, v. 257, p. 255–262. 13. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta–analysis. JAMA, 2002, v. 288, p. 2015–2022. 14. Bostom A.G., Culleton B.F. Hyperhomocysteinemia in chronic renal disease. J. Am.Soc. Nephrol., 1999, v. 10, p. 891–900. 15. Bostom A.G., Kronenberg F., Schwenger V. et al. Proteinuria and total plasma homocysteine levels in chronic renal disease patients with a normal range serum creatinine: Critical impact of true GFR. J. Am. Soc. Nephrol., 2000, v. 11, p. 305–310. 16. Beaudin A.E., Stover P.J.. Folate–mediated one–carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth. Defects Res. C. Embryo Today., 2007, v. 81, p. 183–203. 17. Kidd P.M. Alzheimer’s disease, amnestic mild cognitive impairment, and age–associated memory impairment: current understanding and progress toward integrative prevention. Altern. Med. Rev., 2008, v. 13, p. 85–115. 18. Schafer J.H., Glass T.A., Bolla K.I. et al. Homocysteine and Cognitive Function in a Population–based Study of Older Adults. J. Am. Geriatr. Soc., 2005, v. 53, p. 381–388. 19. Tolmunen T., Hintikka J., Voutilainen S. et al. Association between depressive symptoms and serum concentrations of homocysteine in men: a population study. Am. J. Clin. Nutr., 2004, v. 80, p. 1574–1578. 20. Real J.T., Merchante A., Gomez J.L. et al. Effects of maraphon running on plasma total homocysteine concentration. Nutr. Metab. Cardiovasc. Dis., 2005, v. 15, p. 134–13 21. Ko??nig D., Bisse E., Deibert P. et al . Influence of training volume and acute physical exercise on the homocysteine levels in endurance–trained men: interactions with plasma folate and vitamin B12. Ann. Nutr. Metab., 2003, v. 47, p. 114–118. 22. Jamison R.L., Hartigan P., Kaufman J.S. et al. Effect of Homocysteine Lowering on Mortality and Vascular Disease in Advanced Chronic Kidney Disease and End–stage Renal Disease. A Randomized Controlled Trial. JAMA., 2007, v. 298, p. 1163–1170. 23. Dierkes J., Luley C., Westphal S. Effect of lipid–lowering and anti–hypertensive drugs on plasma homocysteine levels. Vasc. Health Risk Manag., 2007, v. 3, p. 99–108. 24. Malinow M.R. Plasma concentrations of total homocysteine predict mortality risk. Am. J. Clin. Nutr., 2001, v. 74, p. 3.

Гипергомоцистеинемия и патология беременности

Гипергомоцистеинемия приводит к повреждению и активации эндотелиальных клеток (клеток выстилки кровеносных сосудов), что значительно повышает риск развития тромбозов. Не все детали механизма патологического действия гипергомоцистеинемии до конца изучены, но многое уже известно.

Тромбогенное действие гомоцистеина может быть связано с повреждением клеток эндотелия, неспецифическим ингибированием синтеза простациклина, активацией фактора V, торможением активации протеина C, даун-регуляцией экспрессии тромбомодулина, блокадой связывания тканевого активатора плазминогена эндотелиальными клетками. Кроме того, высокие уровни гомоцистеина усиливают агрегацию тромбоцитов вследствие снижения синтеза эндотелием релаксирующего фактора и NO, индукции тканевого фактора и стимуляции пролиферации гладкомышечных клеток.

Микротромбообразование и нарушения микроциркуляции приводят к целому ряду акушерских осложнений. Нарушение плацентации и фетоплацентарного кровообращения могут быть причиной репродуктивной недостаточности: невынашивания беременности и бесплодия в результате дефектов имплантации зародыша. На более поздних стадиях беременности гипергомоцистеинемия является причиной развития хронической фетоплацентарной недостаточности и хронической внутриутробной гипоксии плода. Это приводит к рождению детей с низкой массой тела и снижению функциональных резервов всех жизнеобеспечивающих систем новорожденного и развития целого ряда осложнений периода новорожденности.

Гипергомоцистеинемия может быть одной из причин развития генерализованной микроангиопатии во второй половине беременности, проявляющейся в виде позднего токсикоза (гестоза): нефропатии, преэкламсии и экламсии. Для гипергомоцистеинемии характерно развитие тяжелых, часто неуправляемых состояний, которые могут приводить к досрочному прерыванию беременности по медицинским показаниям. Рождение незрелого недоношенного ребенка в таких случаях сопровождается высокой детской летальностью и большим процентом неонатальных осложнений.

Гомоцистеин свободно переходит через плаценту и может оказывать тератогенное и фетотоксическое действие. Было доказано, что гипергомоцистеинемия является одной из причин анэнцефалии и незаращения костномозгового канала (spina bifida

). Аненцефалия приводит к стопроцентной летальности, а
spina bifida
— к развитию серьезных неврологических проблем у ребенка, включая моторный паралич, пожизненную инвалидность и преждевременную смерть. Нельзя исключить прямое токсическое действие избыточного уровня гомоцистеина на нервную систему плода.

Гипергомоцистеинемия может быть не только причиной, но и спутником акушерских осложнений. Предполагается, что в некоторых случаях проблемы могут быть связаны не только с высоким уровнем гомоцистеина, но и с теми состояниями, которые являются причиной развития гипергомоцистеинемии (витаминодефицитные состояния, сопутствующие заболевания и т. д.)

Следует помнить, что гипергомоцистеинемия может сопровождаться развитием вторичных аутоиммунных реакций и в настоящее время рассматривается как одна из причин антифосфолипидного синдрома. Аутоиммунные факторы могут мешать нормальному развитию беременности и после устранения высокого уровня гомоцистеина.

Диагностика гипергомоцистеинемии

Для диагностики гипергомоцистеинемии проводится определение уровня гомоцистеина в крови. Для дифференциальной диагностики различных форм гомоцистеинемии иногда используются нагрузочные пробы с метионином (определение уровня гомоцистеина натощак и после нагрузки метионином).

Для выяснения причин гипергомоцистеинемии проводится ДНК-диагностика наследственных дефектов ферментов, участвующих в обмене метионина и фолиевой кислоты, в частности, MTHFR, и определение уровня витаминов B6, B12, B1 и фолиевой кислоты в крови.

При обнаружении высокого уровня гомоцистеина в крови рекомендуется проведение тестов, позволяющих исключить дополнительные факторы риска развития сосудистых и акушерских осложнений. Мы рекомендуем проведение гемостазиограммы, анализа крови на волчаночный антикоагулянт, анализа на антифосфолипидные и анти-ДНК-антитела, антитела к щитовидной железе, антитела к фактору роста нервов и анализ крови на наследственные дефекты гемостаза (лейденскую мутацию и наследственные дефекты протромбина). По показаниям могут быть назначены и другие анализы.

Показания для анализа крови на гомоцистеин

Определение гомоцистеина проводят для оценки степени риска артериальных или венозных тромбозов, особенно в молодом возрасте. Одновременно определяют уровень витамина В12 и фолиевой кислоты для определения (исключения) гипергомоцистеинемии, возникшей вследствие дефицитов витаминов. Анализ крови на гомоцистеин делают при подозрении у пациента наследственного нарушения метаболизма метионина, включая недостаточность цистатионин-бета-синтазы (гомоцистинурию) и дефицит метилентетрагидрофолатредуктазы и её термолабильных вариантов – недостаточности метионин-синтазы, нарушения метаболизма кобаламина.

Лечение гипергомоцистеинемии

При обнаружении гипергомоцистеинемии проводится специально подобранная терапия высокими дозами фолиевой кислоты и витаминов группы B (В6, B12, B1). Учитывая то, что во многих случаях витаминодефицитное состояние бывает связано с нарушением всасывания витаминов в желудочно-кишечном тракте, лечение, как правило начинают с внутримышечного введения витаминов группы B. После снижения уровня гомоцистеина до нормы (5—15 мкг/мл) назначаются поддерживающие дозы витаминов per os

.

Во время беременности может быть показано проведение антиагрегантной терапии (малые дозы аспирина, выступающего в данном случае в качестве своеобразного витамина беременности, малых доз препаратов гепаринового ряда). При наличии антифосфолипидного синдрома может быть назначено дополнительное лечение.

Гипергомоцистеинемия — патологическое состояние, своевременная диагностика которого в подавляющем большинстве случаев позволяет назначить простое, безопасное и эффективное лечение, в десятки раз снижающее риск осложнений у матери и ребенка.

Теги: беременность, гомоцистеин

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]