Что такое атмосферное давление и как оно работает?

В метеорологии атмосферное давление Это очень важно учитывать при прогнозировании и изучении поведения климата. Облака, циклоны, штормы, ветры и т. Д. Во многом они обусловлены изменением атмосферного давления.

Однако атмосферное давление не является чем-то осязаемым, чем-то, что можно увидеть невооруженным глазом, поэтому есть много людей, которые понимают концепцию, но на самом деле не знают, что это такое.

Почему мы не замечаем давления воздуха?

Сила всемирного тяготения притягивает все к Земле, в том числе и атмосферу — газовую оболочку планеты. При этом верхние слои атмосферы давят на нижние. Так и возникает атмосферное давление. Трудно поверить, но на небольшой стол размером 1×1 м действует давление, равное давлению, производимому 10 автомобилями. Если это действительно так, то почему же стол не ломается от такой тяжести?


На каждый квадратный сантиметр поверхности нашего тела воздух оказывает давление, приблизительно равное тому, какое оказывает груз массой 1 кг.

Этого не происходит, так как атмосферное давление передается во всех направлениях, а не только вниз. Более того, насколько ты помнишь, согласно третьему закону Ньютона, на этот стол действует такая же сила, но только снизу. И атмосферное давление уравновешивается этой силой.

Известно, что воздух давит на каждого из нас с силой, равной давлению груза массой более 15 т! Это масса трех больших грузовиков! Почему же наши тела не разрушаются под действием атмосферного давления? Дело в том, что воздух внутри каждого нашего органа также находится под давлением. И внутреннее давление воздуха уравновешивает давление, действующее на наше тело снаружи.

Циклон или шквал

Напротив, когда горячий воздух поднимается вверх, он снижает атмосферное давление и вызывает нестабильность. Это называется циклон или шторм. Ветер всегда движется в преимущественном направлении в районы с более низким атмосферным давлением. То есть, всякий раз, когда в какой-либо области бывает шторм, ветер будет сильнее, потому что, поскольку в области меньшего давления, ветер будет идти туда.

Шквал на карте атмосферного давления

Еще один аспект, о котором следует помнить, заключается в том, что холодный и горячий воздух не смешиваются сразу из-за их плотности. Когда они находятся на поверхности, холодный воздух толкает теплый воздух вверх, вызывая падение давления и нестабильность. Затем образуется шторм, в котором область контакта горячего и холодного воздуха называется фронт.

Мы не можем жить без атмосферного давления!

Странно, но факт: мы действительно не можем жить без атмосферного давления! Даже сейчас, когда ты читаешь эту статью, твое тело использует атмосферное давление, чтобы перемещать воздух в легкие и из них. Это говорит о том, что благодаря атмосферному давлению мы можем дышать.

Как же мы дышим?

Диафрагма — самая важная мышца при вдохе. Она попеременно сокращается и расслабляется, при этом изменяются объем легких и внутреннее давление в них. Когда объем легких увеличивается, то давление в них снижается, т.е. оно становится ниже атмосферного, и воздух начинает поступать в легкие. Так происходит вдох. При повышении давления в легких воздух выходит. Это выдох.


Диафрагма во время дыхания

Как измерить атмосферное давление?

В середине XVII в. выдающийся итальянский математик и физик Эванджелиста Торричелли проделал следующий опыт. Он взял стеклянную трубку длиной около 1 м, запаянную с одного конца, и заполнил ее ртутью. Затем перевернул трубку и опустил ее в чашку с ртутью. Как выяснилось, некоторое количество ртути вылилось в чашку, а высота оставшегося в трубке столба ртути составила 760 мм. При этом над поверхностью ртути в трубке образовалось безвоздушное пространство.

Торричелли объяснил это явление следующим образом. На поверхность ртути в чашке действует атмосферное давление, которое передается в трубку. В связи с тем, что ртуть находится в равновесии, атмосферное давление равно давлению, которое создается весом столба ртути в трубке.

Барическая ступень[править | править код]

Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень равна:

Изменение атмосферного давления

Торричелли также обратил внимание, что уровень столба ртути не находится на одном месте, он меняется: либо повышается, либо понижается. На основании своих ежедневных наблюдений ученый сделал вывод о том, что если давление повышается, то столб ртути в трубке также повышается, и наоборот. Как правило, колебания атмосферного давления связаны с изменениями погоды. Если давление падает, то следует ожидать дождь и ветер. В случае повышения давления ожидается улучшение погоды, а зимой — еще и похолодание.

Что советуют делать специалисты при пониженном атмосферном давлении?

Движение ртути более чем на одно деление за 3 часа – повод для стресса у крепкого организма здорового человека. Такие колебания чувствует каждый из нас в виде головной боли, сонливости, усталости. Более трети людей страдает от метеозависимости в разной степени тяжести. В зоне высокой чувствительности население с заболеваниями сердечно-сосудистой, нервной и дыхательной системы, пожилые люди. Как помочь себе, если близится опасный циклон?

Здесь собрано не так много новых советов. Считается, что в совокупности они облегчают страдания и учат правильному образу жизни при метеоуязвимости:

  1. Регулярно ходите к врачу. Консультируйтесь, обсуждайте, спрашивайте совета на случай ухудшения самочувствия. Имейте всегда под рукой прописанные препараты.
  2. Купите барометр. Продуктивнее отслеживать погоду по движению ртутного столба, а не боли в колене. Так вы сумеете предвидеть надвигающийся циклон.
  3. Следите за прогнозом погоды. Предупрежден – значит вооружен.
  4. Накануне перемены погоды высыпайтесь и ложитесь раньше обычного.
  5. Налаживайте режим сна. Обеспечьте себе полноценный 8-часовой сон, подъем и засыпание в одно время. Это оказывает мощный восстановляющий эффект.
  6. График питания равносильно важен. Следите за сбалансированным рационом. Калий, магний и кальций – обязательные минералы. Запрет на переедание.
  7. Пейте витамины курсом весной и осенью.
  8. Свежий воздух, прогулки на улице – легкие и регулярные нагрузки укрепляют сердце.
  9. Не перенапрягайтесь. Отложить бытовые дела не так опасно, как обессилить организм перед циклоном.
  10. Копите благоприятные эмоции. Угнетенный эмоциональный фон подпитывает болезнь, потому улыбайтесь чаще.
  11. Одежда из синтетических ниток и меха вредна статическим током.
  12. Храните народные способы снятия симптомов списком на видном месте. Рецепт травяного чая или компресса трудно вспомнить, когда ломит виски.
  13. Работники офисов в высотных зданиях страдают от перемены погоды чаще. Берите отгул по возможности, а лучше меняйте работу.
  14. Длительный циклон – дискомфорт на несколько дней. Есть возможность уехать в спокойный регион? Вперед.
  15. Профилактика минимум за день до циклона готовит и укрепляет организм. Не сдавайтесь!

Не забывайте принимать витамины для укрепления здоровья

Атмосферное давление – это явление, которое абсолютно не зависит от человека. Более того, наше тело подчиняется ему. Какое должно быть оптимальное давление для человека определяет регион жительства. Особо поддаются метеозависимости люди с хроническими заболеваниями.

Атмосферный воздух имеет физическую плотность, вследствие чего притягивается к Земле и создает давление. В процессе развития планеты менялся как состав атмосферы, так и ее атмосферное давление. Живые организмы вынуждены были приспосабливаться к существующему давлению воздуха, меняя свои физиологические характеристики.

  1. Нужно обеспечить себе полноценный отдых, снизить нагрузку.
  2. Стараться недолго быть на открытом воздухе.
  3. Избегать тяжелой пищи, острых приправ и алкоголя.
  4. Питаться нужно дробно, небольшими порциями.
  5. Если чувствуете излишнюю нервозность, или у вас появилась бессонница — воспользуйтесь успокоительными отварами или каплями.
  6. Следите за состоянием здоровья, особенно если у вас имеются любые заболевания, связанные с сердечно-сосудистой системой.
  1. Нужно снизить нагрузку на организм, больше отдыхать.
  2. Увеличьте в своем рационе продукты, богатые витамином Е и калием (орехи, сухофрукты, семечки, курага, бананы, морковь, свекла, петрушка, сельдерей).
  3. Принимайте контрастный душ, делайте легкую зарядку, пейте травяные чаи.
  4. Проводите как можно больше времени на свежем воздухе.

Считается, что повышенной метеочувствительностью страдает почти половина женщин, которые проживают в развитых странах. Количество же метеочувствительных мужчин меньше — примерно одна треть. Метеозависимые люди чаще всего подвержены болезням сердца и сосудов, легких, а также эндокринным заболеваниям.

Резкие перепады температуры и частые смены погоды в короткий промежуток времени часто оказывают негативное последствие на здоровье. Уже замечено, что при частой смене погоды скорую помощь люди вызывают значительно чаще, значит – чувствуют себя хуже.

Несмотря на то, что такого диагноза как «метеозависимость» не существует, врачи не отрицают, что погода действительно оказывает влияние на наше самочувствие. Принято считать, что чем слабее у человека иммунитет и больше хронических заболеваний, тем чувствительнее реагирует человек на изменения погоды. Почему?

По статистике метеозависимость является наследственной чертой примерно в 10% случаев. Чаще всего она наследуется по материнской линии. 40% случаев метеозависимости возникает вследствие серьезных заболеваний сосудов. А оставшиеся 50% — это возраст и накопившиеся на протяжении жизни болячки (начиная с родовой травмы и заканчивая язвой желудка или ожирением).

Наиболее распространенными болезнями, приводящими к метеозависимости, являются атеросклероз, гипертония и гипотония, хронические заболевания дыхательных путей (ангина, тонзиллит, пневмония), а также аутоиммунные заболевания (например, сахарный диабет).

Если метеозависимость наблюдается у ребенка, то вероятнее всего, она является следствием тяжелой беременности матери, тяжелых родов, переношенности или, наоборот, недоношенности.

Как показывает практика, большинство болезней, приобретенных человеком на протяжении жизни, остаются с ним навсегда. Поэтому людям с метеозависимостью остается только следить за сводками погоды и принимать соответствующие меры по облегчению симптомов.

Барометр

Прибор, предназначенный для измерения атмосферного давления, называется «барометр».

Торричелли изобрел ртутный барометр, в котором в качестве измерителя атмосферного давления служит столбик ртути. Такие барометры используются до сих пор.

Однако в настоящее время чаще применяются более современные безжидкостные приборы, так называемые анероидные барометры.


Высота ртути в трубке, равная 760 мм, принята за эталон нормального атмосферного давления, которое можно измерять высотой ртутного столба (в мм). Когда говорят, что атмосферное давление равно, например, 755 мм ртутного столба (мм рт. ст.), это означает, что воздух производит такое же давление, что и столб ртути высотой 755 мм рт. ст.

История[править | править код]

Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).

В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.

Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.

Как мы реагируем на изменения атмосферного давления?

Наш организм приспособлен для проживания в условиях нормального атмосферного давления, и, к сожалению, любые изменения внешнего давления сказываются на нашем самочувствии.

Ты уже знаешь, что нормальным атмосферным давлением для человека считается давление 760 мм рт. ст. Однако такие показатели барометр фиксирует не так часто. Это связано с тем, что давление на поверхности Земли непостоянно и неравномерно. Величина атмосферного давления зависит от времени суток, поры года и различных географических условий. Как правило, суточные колебания давления — не более 4—5 мм. Такую незначительную разницу мы не замечаем и хорошо переносим.


У людей, живущих в Перуанских Андах на высоте 4500 м над уровнем моря, акклиматизация начинается с раннего детства. Даже их внутренние органы приспосабливаются к местным условиям. Так, размер грудной клетки жителя гор гораздо больше, чем человека, живущего на равнине

Атмосферное давление на древней Земле было в два раза ниже современного

Лавовые потоки захватывают пузырьки воздуха и, затвердевая, сохраняют образчики атмосферы для исследователей; а их дело — расшифровать эти метеорологические послания. Фото с сайта deviantart.com

В архейских вулканических базальтовых породах возрастом 2,74 млрд лет сохранились следы газовых пузырьков, захваченных из окружающей среды жидкой лавой. Международная команда геофизиков, ориентируясь на размер этих следов, рассчитала атмосферное давление на древней планете. Оно оказалось в два раза ниже современного. По мнению ученых, столь низкое давление связано с малым количеством азота в архейской атмосфере. Низкая плотность атмосферы означает, что характеристики важных физико-химических процессов должны быть скорректированы. Кроме того, раньше считалось, что подогрев планеты был обусловлен усиленным поглощением инфракрасного излучения плотной атмосферой. Новые данные заставляют пересмотреть и эту гипотезу. Наиболее вероятная замена — высокая концентрация парниковых газов, предположительно метана.

Трудно вообразить себе тему более манящую, но и менее доступную для изучения, чем начало земной жизни. Основную проблему здесь составляет не недостаток идей, а редкость надежных материальных свидетельств тех давно минувших эпох. Речь идет об архее, то есть о временах примерно 3,8–2,7 млрд лет назад. С тех пор мало что уцелело в бурной истории планетарных преобразований. Тем ценнее те твердые крупицы фактической информации, на основе которых можно строить здание проверяемых гипотез. Новый блок такой информации использовали ученые из Вашингтонского университета вместе с коллегами из Университета Западной Австралии и Музея природы и науки в Денвере (США) для реконструкции древнейшей атмосферы Земли. Их выводы заставляют серьезно пересмотреть или, по крайней мере, задуматься о принятом на сегодня гипотетическом портрете древней Земли.

Эта команда уже несколько лет занимается изучением архейских отложений в районе Пилбара (Pilbara) в Австралии. В данном случае они работали с породами формации Бунгал (Boongal Formation). Возраст этих отложений оценивается как поздний архей, то есть 2,75 млрд лет. Это вполне интересный возраст: атмосфера планеты в этот период не слишком далеко ушла от своего состояния в начале земной жизни. По крайней мере, до старта кислородной революции оставалось еще 300 миллионов лет.

В формации Бунгал имеются вулканические слои, местами, как показывают особенности их строения, формировавшихся в прибрежной морской полосе. Для геологов это означает, что лавовые языки застывали на земной поверхности, а не под землей или под толщей воды на океаническом дне, и на нулевой высоте над уровнем моря, а не на километровом вулканическом кратере. Именно такие участки древних ландшафтов и подбирали ученые для решения задачи об измерении атмосферного давления. При прочих неизвестных параметрах — сомнительно реконструированные вышележащие слои земных пород, или глубина океана, или высота над уровнем моря — задача решалась бы в лучшем случае с большим допуском, а скорее, не решалась бы вовсе. Но для подобранных палеоландшафтов этими факторами можно было пренебречь.

Материальной основой для реконструкций послужили следы газовых пузырьков, захваченных лавовыми потоками из атмосферы при застывании. Естественно, за миллиарды лет от самой атмосферы в этих пузырьках практически ничего не осталось. Они заместились элементами материнской породы и вторичными минералами, превратившись в пятна другого цвета, состава и текстуры. Но при этом сохранилась неизменной их круглая форма. Если бы сама порода деформировалась или по тем или иным причинам испытывала дополнительное давление, то пузырьки бы сплющились, появились бы микротрещины. А раз нет ни того, ни другого, значит и размер пузырьковых пятен не изменился за долгую историю преобразований пород. Следовательно, опираясь на размер пятен, можно рассчитать и то давление, при котором они образовались. Размер пузырьков на поверхности лавы контролируется только атмосферным давлением, а с увеличением глубины лавового потока к атмосферному давлению прибавляется давление самого лавового материала. У поверхности пузырьки больше, внизу — меньше. Зная разницу в размерах пузырьков на разных глубинах и параметры вулканического материала, определяющего давление в толще потока, можно оценить атмосферное давление. Этот метод уже был с успехом опробован для измерения атмосферного давления на разных высотах над уровнем моря для более молодых вулканических отложений Турции и Китая.

Cледы от газовых пузырьков в базальтовой породе формации Бунгал. Стрелка

показывает на след с концентрическими кругами, подтверждающими постепенное и более позднее заполнение пузырька. Форма следов округлая и трещин вокруг пузырьков не видно.
Длина масштабного отрезка
1 см. Фото из обсуждаемой статьи в
Nature
Итак, вот размер пузырьков в разных слоях вулканического базальта, вот мощности вулканических слоев с пузырьками, вот плотность расплавленного базальта. Из этих данных легко высчитывается давление древней атмосферы: 0,23±0,23 атм. Оценить достоверность столь низких значений непросто. Но ученые сослались на свои предыдущие заключения (S. M. Som et al., 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints), которые были сделаны на основе изучения следов древних дождевых капель, сохранившихся примерно в тех же архейских слоях. При известном романтическом настрое можно вообразить, как в безветрии падают на черный пепел капли дождя, покрывая его оспинами мокрых лунок, в воздухе пахнет нашатырной свежестью, метановое безмолвие нарушается визгливым перестуком капель. Эта древнейшая инталия, запечатанная слоями тонкой пыли, навсегда сохранила в каменном прошлом память о том дожде.

Но сухие физические выкладки оставляют за скобками изумление перед природным чудом, принимая в расчет лишь глубину лунок от тех дождевых капель. Их можно измерить, и по этим измерениям оценить скорость падения капель, а зная эту скорость, перейти к плотности атмосферы. Дождевые капли дали величины давления порядка 0,52–1,1 атм, при этом более вероятной ученым виделась нижняя оценка в 0,52 атм, а не верхняя в 1,1 атм. С учетом прежних и новых данных была принята величина в 0,5 атм для атмосферы позднего архея. Низкое атмосферное давление объясняется существенно более низким содержанием в ней азота. В отсутствии кислородного выветривания магматических пород его количество должно быть по крайней мере вполовину меньше, чем в современной атмосфере. Предположительно, азот присутствовал в атмосфере в виде аммиачных и цианистых соединений.

Что дает столь низкое атмосферное давление для реконструкций других, опосредованных, условий на древнейшей Земле? Известно, что в то время на планете существовала текучая, не замерзшая вода, оледенения не было. При низком свечении Солнца — а оно было тогда примерно на 20% бледнее современного — какие-то условия должны были обеспечить сохранение тепла. Считалось, что такими утеплителями могли служить плотная атмосфера, поглощающая инфракрасное излучение, и высокое содержание углекислого газа, обеспечивающего парниковый эффект. Но если атмосферу из этого списка вычеркнуть, то остается только углекислый газ. А его доля в атмосфере, по имеющимся данным, не была настолько высока, чтобы поддержать должный подогрев планеты. Значит, основная роль в этом процессе принадлежала другим парниковым газам, например метану.

Кроме того, низкое атмосферное давление предполагает, что вода закипала при существенно более низкой температуре — 58°С. Значит, скорости и направления химических процессов отличались от современных. Также отличались и скорости фотохимической реакции фракционирования изотопов серы (см. Mass-independent fractionation), протекающие под действием ультрафиолета. По всей вероятности, потребуются новые расчеты масс-независимого фракционирования с подкорректированными атмосферными параметрами. Ведь на них базируется значительная часть рассуждений о климатических условиях и жизни на древней планете.

Источники:

1) Sanjoy M. Som, Roger Buick, James W. Hagadorn, Tim S. Blake, John M. Perreault, Jelte P. Harnmeijer and David C. Catling. Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels //
Nature Geoscience
. Published online 09 May 2021. DOI: 10.1038/ngeo2713. 2) Sanjoy M. Som, David C. Catling, Jelte P. Harnmeijer, Peter M. Polivka, Roger Buick. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints //
Nature
. 2012. V. 484. P. 359–362. DOI: 10.1038/nature10890.

Елена Наймарк

Давление на высоте

Ты уже знаешь, что верхние слои атмосферы оказывают давление на нижние. Это означает, что у поверхности Земли воздух максимально сжат. Однако чем выше мы поднимаемся над Землей, тем меньше становится слоев воздуха, которые сжимают нижние слои, и соответственно, уменьшается давление. Именно такие перепады давления мы сразу же ощущаем на себе.


Запомни: чем больше высота, тем меньше атмосферное давление

География 6 класс

краткое содержание других презентаций

««Горы» 6 класс» — Элементы гор. Анды, Кордильеры, Альпы, Кавказ, Тянь-Шань. Проблемная беседа. Цели и задачи урока. Самые высокие горы России- Кавказ. Горы суши. Самые высокие горы Европы. Ответь на вопросы. Просмотр кинофрагмента «Горы суши». Силы, формирующие рельеф Земли. Кордильеры. Основные формы рельефа Земли. Как описывать географическое положение гор. Новые понятия темы.

«Природные зоны и их обитатели» — Пингвины — хорошо обособленная группа птиц, имеющая древнее происхождение. Пингвин — единственная птица, которая может плавать, но не может летать. Гигантский кенгуровый прыгун. Родина шиншилл — Южная Америка. Основным цветом зебры Греви является белый или бело-жёлтый. Кошачья выдра. Вилорог. Коала. Секуранская лисица. Шиншиллы. Мальтийская ящерица. Большой рыжий кенгуру. Жирафы обитают в саваннах Африки.

«Водопады мира» — Водопад был первоначально обнаружен в 1910 году испанским исследователем по имени Эрнесто Санчес Ла Крус. Реки, живительные соки, Бросает в бездну водопад…… Легенда о происхождении Ниагарского водопада. Высота падения настолько велика, что прежде чем достичь земли, вода распыляется на мельчайшие частички и превращается в туман. Самые красивые водопады мира. Считается, что первым европейцем, увидевшим водопад, стал Дэвид Ливингстон.

«Формирование рельефа» — Действие внешних сил. Действие внешних сил Земли. Формирование рельефа Земли. Сила падающей воды. Накопление осадочного материала. Внутренние и внешние силы. Задание по карте. Превращение осадков в слои горных пород. Внутренние и внешние силы Земли. Горы. Деятельность внутренних и внешних сил Земли. Формирование рельефа. Корни растений. Сила приливной волны. Рельеф. Работа ветра меняет. Горы Кордильеры, Анды.

«Игра по Казахстану» — Моя Родина — Казахстан. Бронза – это сплав меди и золота. Энеолит – это время появления железа. Где и когда впервые были обнаружены останки древнего человека. Родовая община – это постоянный устойчивый коллектив родственников. Историческая викторина. Родовая община. Питекантроп – это один из древнейших людей на Земле. Назовите хронологические рамки эпохи камня – палеолита. Чайнворд. Как назывался первоначальный коллектив людей.

««Атмосфера Земли» 6 класс» — При ветрах какого направления чаще всего выпадают осадки. Для измерения каких элементов погоды используются следующие приборы. Вычислите среднегодовую температуру воздуха. Назовите элементы погоды. Барометр. Как называется слой атмосферы, где формируется погода. Опишите наблюдаемое явление и объясните его. Где содержится основная масса атмосферного воздуха. Что называется насыщенным воздухом. Перечислите климатообразующие факторы.

Почему мы это ощущаем

На земле давление воздуха в барабанной полости уха равно нормальному атмосферному давлению. А при наборе самолетом высоты давление снижается, и возникает разница давлений, т.е. наша ушная перепонка оказывается вдавленной. Именно поэтому мы и ощущаем заложенность в ухе.

Наиболее знакомый пример — «закладывание» ушей в самолете при взлете. Как облегчить это состояние? Есть варианты:

  1. Широко открыть рот.
  2. Сделать несколько глотательных движений.

География

Почему вдоль экватора атмосферное давление пониженное, а над полюсами — повышенное?
Близ экватора воздух сильно нагревается, расширяется и поднимается вверх. Поэтому образуется низкое давление. Вокруг полюсов из-за низких температур воздух тяжелый. Он опускается вниз, и давление становится высоким

Ещё по теме

Природные зоны земли. В чём сходство и различие между влажным экваториальным лесом и смешанным лесом?

Чем живые организмы отличаются от неживых?

Дополните предложения названиями свойств воздуха.

Что такое Вселенная?

Зачем нам география и как мы будем ее изучать. Учебник ориентирует вас в географии. Хотели бы вы выбрать другое название? Какое? Есть ли у вас свой символ — ориентир в жизни?

Знаете ли вы, что такое компас? Приходилось ли вам им пользоваться?

Каким образом все части гидросферы связаны между собой?

Что составляет мир живой природы Земли?

Какую оболочку Земли называют атмосферой?

Назовите, какая из географических наук изучает: процессы, происходящие в Мировом океане; население Земли; процессы, происходящие в грунтах, на которых возводятся сооружения; климаты земного шара; состав и строение земной коры; рельеф земной поверхности; влияние особенностей территории на состояние здоровья населения.

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

О сайте

На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.

Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.

calcsbox.com

На сайте используется технология LaTeX.

Поэтому для корректного отображения формул и выражений

пожалуйста дождитесь полной загрузки страницы.

© 2021 Все калькуляторы online

Копирование материалов запрещено

Источник

Перепады давления в горах

В горах на высоте 2500—3000 м над уровнем моря атмосферное давление гораздо ниже, чем у подножия. В таких условиях из-за разницы давления внутри организма и атмосферного давления наш организм подвергается значительному стрессу. Более того, не исключено появление признаков горной болезни: могут возникнуть боль в ушах, затруднение дыхания, тошнота и слабость.

У тренированных альпинистов и людей, постоянно проживающих в горной местности, такое недомогание встречается крайне редко. Это связано с тем, что их организм уже приспособился к условиям пониженного давления.

Группы риска

В основном, к этой группе относят людей с хроническими заболеваниями и пожилых с возрастными изменениями здоровья. Риск метеозависимости возрастает при наличии следующих патологий:

  • Заболевания органов дыхания (легочная гипертензия, хроническая обструктивная болезнь легких, бронхиальная астма). Возникают резкие обострения.
  • Поражение ЦНС (перенесенный инсульт). Высок риск повторного повреждения головного мозга.
  • Артериальная гипертензия или гипотония. Возможен гипертонический криз с развитием инфаркта миокарда и инсульта.
  • Заболевания сосудов (атеросклероз артерий). Атеросклеротические бляшки могут отрываться от стенок, вызывая тромбоз и тромбоэмболию.

Давление под водой и под землей

Представители некоторых профессий вынуждены работать в условиях пониженного давления воздуха. Это шахтеры, водолазы и рабочие кессонов — специальных конструкций, используемых для постройки мостов и других водных сооружений. Опускаясь в глубокую шахту, шахтеры испытывают на себе действие повышенного атмосферного давления. В очень глубоких шахтах оно может достигать около 850 мм рт. ст.

Давление под водой также намного превышает атмосферное. Так, например, при погружении на глубину около 100 м на водолаза будет действовать давление, которое больше атмосферного приблизительно в 10 раз!

Примечания[править | править код]

Источники[править | править код]

Сноски[править | править код]

  1. ↑ Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.

Сложности работы водолаза


Погружение на глубину возможно только в специальных водолазных костюмах, причем резиновый скафандр используется для погружения не более чем на 40 м. Работать на больших глубинах можно только в жестком скафандре, который принимает на себя все давление воды

При длительном нахождении водолаза в условиях высокого давления воды часть воздуха, которым он дышит, растворяется в крови. При этом азот, содержащийся в воздухе, организмом не используется, а накапливается в крови. Во время подъема на поверхность азот выделяется в виде пузырьков, которые могут закупорить кровеносные сосуды. Для того чтобы не допустить возникновения этих проблем, водолаза поднимают очень медленно!


Если в течение часа водолаз работал на глубине 30 м, то выход на поверхность осуществляется в течение часа, а если тот же час водолаз провел на глубине 60 м, то подъем длится 6 часов!

Поделиться ссылкой

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]